复杂度分析之大O表示法。

2024-02-08 02:18

本文主要是介绍复杂度分析之大O表示法。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、概要。
好的程序设计表现出程序执行速度快,占用内存空间小的优点,分别对应时间复杂度和空间复杂度。
2、复杂度分类两种。
算法的时间复杂度是指算法需要消耗的时间资源。算法执行时间的增长率与f(n) 的增长率正相关,称作渐近时间复杂度(Asymptotic Time Complexity),简称时间复杂度。定义为T(n) = O(f(n)),称函数T(n)以f(n)为界或者称T(n)受限于f(n)。
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。

常见的算法时间复杂度由小到大依次为:
O(1) 常数阶
O(logn) 对数阶
O(n) 线性阶
O(n*logn) 线性对数阶
O(n^2) 平方阶
O(n^k) K方阶
O(2^n) 指数阶
O(n!) 阶乘阶

其中,O(2^n) 和O(n!)为非多项式量级,NP(Non-Deterministic Polynomial,非确定多项式)问题,其复杂度计算机往往不能承受的。除此二者,都是多项式量级。
在这里插入图片描述
图表来源:https://www.bigocheatsheet.com

3、时间复杂度。
3.1辨识要素及示例。

int CalcSum(int n)
{int sum = 0;for (int i = 0; i < n; i++){sum += i;}return sum;
}

Demo求累加和,假设每条语句执行时间为time,容易算出来该函数运行时间为:T(n) = time+time+ntime2 = 2*(n+1)*time。用f(n)来表示代码的执行次数和数据规模的关系,即f(n)=2n+2。f(n)中的常数项对于整个公式的值的影响我们直接忽略,同样,我们也忽略系数。即得:f(n) = n;代入T(n) = O(f(n)),得:T(n) = O(n),线性阶。

①、只关注循环执行次数最多的一段代码;


int CalcSum(int n)
{int sum1 = 0;int sum2 = 0;for (int i = 0; i < n; i++){sum1 += i;}for (int j = 0; j < n * 2; j++){sum2 += j;}return sum1 + sum2;
}

容易看出来循环二比循环一的执行次数多,因此只需要关注循环二,得到T(n) = O(n);线性阶。
②、加法法则:总复杂度等于量级最大的那段代码的复杂度;

int CalcSum(int n)
{int sum1 = 0;int sum2 = 0;int sum3 = 0;for (int i = 0; i < 100; i++){sum1 += i;}for (int j = 0; j < n; j++){sum2 += j;}for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){sum3 += j;}}return sum1 + sum2 + sum3;
}

容易得到循环一二三的时间复杂度分别为:O(1) (常数阶),O(n)(线性阶),O(n^2)(平方阶);则T(n) = O(1)+O(n)+O(n^2);按照加法原则,总复杂度等于量级最大的那段代码的复杂度。即T(n) = O(n^2),平方阶。
③、乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积。


int CalcSum(int n)
{int sum = 0;for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){sum += j;}}return sum;
}

嵌套循环 = 外层内层。即T(n) = O(nn) = O(n^2),平方阶。
Ps:
对数阶:

int CalcSum(int n)
{int sum = 0;int i = 1;do{i = i * 2;sum += i;} while (i < n);return sum;
}

在while循环里面,每次都将 i 乘以 2翻倍,距离n越来越近。循环x次后,退出,也就是说2^x >=n。那么x = log2n(以2为底,n的对数)。这就是对数阶,时间复杂度为:T(n) = O(logn)。
线性对数阶:
将对数阶循环n遍,就是线性对数阶。即:T(n) = n*(O(logn)) = O(n*logn)。
3.2时间复杂度三种类别。
时间复杂度里细分起来又有最好、最坏、平均情况时间复杂度之分:
1、最好情况时间复杂度就是在最理想的情况下,执行这段代码的时间复杂度;
2、最坏情况时间复杂度就是在最糟糕的情况下,执行这段代码的时间复杂度;
3、平均情况时间复杂度顾名思义就是结合概率论分析从最好到最坏每种情况平均下来的加权平均时间复杂度。
在这里插入图片描述
图表来源:https://www.bigocheatsheet.com
4、空间复杂度。
空间复杂度比较常用的有:O(1)、O(n)、O(n²)。
4.1 S(n) = O(1).
不存在存储空间随变量变化情况。

void GetSpace(int n)
{vector<int> array;array.push_back(1);array.push_back(2);array.push_back(3);array.push_back(4);array.push_back(5);int sum = 0;for (auto it:array){sum += it;}
}

4.2 S(n) = O(n).
例程中,申请空间后,没有在申请其他空间。复杂度为:O(n)。

void GetSpace(int n)
{int* p = new int[n];int sum = 0;for (int i = 0; i <= n; ++i){sum += i;}
}

5、 总结
①、算法的速度并非指时间,不是以秒为单位;而是操作数的增速。从增量的角度度量的。
②、平时说算法的速度,指的是随着输入的增加,其运行时间将会以什么样的速度进行增加。
③、算法运行时间用大O表示法表示。
④、 O(㏒n)比O(n)快。当操作的元素规模差距越大,快的越明显。

这篇关于复杂度分析之大O表示法。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689640

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis