奇点云行业观察 | 购物中心如何实现高质量数据采集?

2024-02-07 22:58

本文主要是介绍奇点云行业观察 | 购物中心如何实现高质量数据采集?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⼈脸识别是线下零售数字化升级的核心抓手,再怎么强调也不为过,⼈脸算法的升级和智能硬件的普及将真正把Mall的数字化从概念走进现实。抓住她的脸,记住她的路线, 走进她的心田,Mall的运营数字化才能真正登堂入室,请记住一点,有想法做好线下Mall生态的朋友,你要谨慎的不是万达,不是吾悦广场,是BAT等互联网巨头!(本⽂需要你花费5分钟阅读,⼲货不解释)

近些年,虽然线上零售对线下零售造成很大的冲击,但在零售总额实际比例中,线下零售占比高达90%,而线上零售只占10%。展望未来,线下零售依然会占零售的重要地位。消费者对吃喝玩乐、生活服务在线上是无法切身体验到的,这种体验式零售业态的典型代表就是购物中心。

 

1、购物中心发展三阶段

国内购物中心的发展,大致经历了三个阶段:摸索——发展——成熟。

摸索阶段:2000年前的整个20年(1980年——2000年),中国购物中心基本处于萌芽状态,百货成为市场主流,但在营运管理上用百货的运作模式或纯地产思维来管理,往往弱化信息化的建设。

发展阶段:2000年后的10年里面(2000年——2010年),购物中心管理者在思路上逐渐清晰化“统一经营、分散管理”、“百货购物中心化,购物中心百货化”的思维已经深入骨髓,对信息化的要求提出了更高的要求,强调招商、租约、会员及营运的管理。

成熟阶段:2010年开始的近10年(2010年——至今),购物中心进入相对成熟阶段,类型千差万别。购物中心从业者思想从“经营人到经营物”的角度在思考发展变革,全渠道思路已逐步运用于实践,进入“百花齐放、百家争鸣”的阶段。

 

2、购物中心发展的困局

购物中心经历了多年的高速发展,受到业态饱和度、经济下行、市场疲软、品牌及商场布局同质化等因素影响,购物中心从业者面临巨大的挑战:

 

招商难:待开发的购物中心数量猛增、竞争激烈、分流严重,导致购物中心招商、营运困境越来越突出;而对已开业的购物中心,由于缺乏数据,无法用数据来指导招商,商场的定位和顾客呈现的数据往往存在巨大差异。

规划难:多数商业地产商过多关注品牌规划而忽略背后的租金规划,找不到合适的信息化手段对业态规划进行有效监控,商场铺位布局由于没有用数据“说话”,造成商铺间的联动效应不强。

营运管理难:业态持续调整,是购物中心租金提升的重要保障,业态调整要考虑租户满意度和顾客满意度,而购物中心租赁为主的业态模式往往缺乏这些数据抓手,从“开业大吉”变成“开业大急”。

 

3、突破数据掣肘,跨越管理鸿沟

线下购物中心与线上平台最大的区别在于:场景化、多触点。场景化营销是购物中心中最容易理解的着力点,相应的技术难度也较高,需要全触点的数据采集能力,经过标签处理、分析引擎、营销引擎等找到合适的消费者,在合适的时间对他们做适合他们的触发。

运营好购物中心必须要掌握好用户体系、交易体系等,要以数据为驱动、消费者为核心,同时也要不断创新,通过新的触达消费者的方式去适应消费者新的消费习惯。购物中心以消费者大数据驱动精细化运营,这里的消费者大数据包含了消费者的属性、偏好、行为以及各个触点交互产生的数据等数据的采集、加工和整合,购物中心将经营思维从商品出发转变到消费者身上。

目前购物中心销售数据的采集,主要还是以下几种模式:数据填报、接口模式、DATAHUB、下放POS机、微信端录入及数据盒子,这些模式的数据采集无疑都是对数据收集的补充,但是存在的问题也非常突出:成本高、运维重、商户谈判难、易出错、商户扣留小票、易盗刷积分等等,体现的采集模式还是以被动采集为主;对于会员的拓新手段乏力:会费入会、购物入会、邀请加入、合作伙伴入会等等,都缺乏顾客的参与感、互动性及体验性,限制了会员主动入会的热情;由于传统客流技术的局限性(例如红外线客流、WIFI客流),建立不了Face-Id和会员Id的联系,对会员的行为数据根本无法做到准确收集。

  

怎样才能改变传统模式对于数据采集中遇到的问题,同时又能提高顾客体验?建立一个精细化的数据采集体系尤为必要,借助顾客主动留下消费数据、会员数据,结合后台大数据的技术处理能力,实现对顾客营销的赋能,这无疑是购物中心数据采集技术上的一项巨大提升。

例如上海某购物中心,经过多年连锁化发展经营,会员数据、小票数据、顾客行为等数据采集一直都不理想,对会员的行为数据分析、贴标、AI营销推荐更是无从谈起。

然而购物中心大数据之路的核心难题是数据采集,伴随着AI和大数据愈发成熟,数据采集可基于AI智能终端的互动体验来实现,通过人脸识别和IOT技术打造的多功能魔镜及识客系统多端触达购物中心的消费者,不断沉淀线下可运营数据资产,这些数据资产与该购物中心的数据打通,形成基于 Face ID 的消费品质、消费层级、网购偏好等多维度顾客画像。同时洞察顾客从进入购物中心到离开的每一个行为。借助数据中台处理能力,利用会员的消费数据+行为数据,精准会员贴标、实现AI促销引擎推荐,最终达到会员“一对一”的营销目的,实现购物中心的价值转换。

 

4、数据采集让资源体现最大价值

购物中心对数据的收集,为后续大数据分析打下了坚实基础,是实现购物中心高效、高质、统一管理和经营的巨大助力,完善的数据采集对购物中心从业者在后续招商、租约、会员、营销、分析无疑有巨大的指导意义。完整的数据采集是大数据分析的基础,也是营收的重要体现;以数据为基础,实现招商的优化、租户的调整及汰换;提升对租户服务能力及广告投放;深度洞察会员,数据化会员的获得率、保持率、贡献率、满意率及流失率,标签化会员,实现会员的数字化营销;监控客单价、客户群组及顾客流向、寻迹等,可以及时调整营销方案和力度。

在消费者体验经济的大趋势下,大数据会帮助购物中心做出更好的决策,提高运营效率,挖掘更多的流量变现能力。

 

微信群首次开放✨

想了解更多数据方面干货

与行业专家亲密接触

欢迎扫二维码加小编邀你进群

备注:公司-姓名-职位

转载于:https://www.cnblogs.com/StartDT/p/10872054.html

这篇关于奇点云行业观察 | 购物中心如何实现高质量数据采集?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689171

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J