支持向量回归_基于支持向量回归的区域化流量历时曲线分析

2024-02-07 20:50

本文主要是介绍支持向量回归_基于支持向量回归的区域化流量历时曲线分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

6034370397c9f04b3627cc53eec7d806.png 04d9d147ca990c33570f826194ad1b16.png

题目:

Regional Analysis of Flow Duration Curves through Support Vector Regression

作者:

Mehdi Vafakhah1, Saeid Khosrobeigi1

单位:

Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Iran

刊物/年份:
Water Resources Management / 2019

04d9d147ca990c33570f826194ad1b16.png

文案:史虹键

排版:史虹键

校核:丁光旭

04d9d147ca990c33570f826194ad1b16.png

基于支持向量回归的区域化流量历时曲线分析

afdce5c3e38433b79c518aee367d3257.png

研究背景

流量历时曲线(FDC)显示了特定时间段内日流量大小和频率之间的关系,被广泛应用于水资源管理。然而世界上大量的流域都缺少观测资料,这种情况导致需要使用区域化方法来估计未测量河流流域的FDC。人工智能方法作为资料较少流域FDC预测的有效技术被广泛应用,目前还没有研究使用SVR(支持向量回归)进行区域化FDC分析。因此,有必要对SVR在这一领域的能力进行评估。

研究目的

文章的研究主要有两个目的:

a .利用SVR(支持向量回归)、ANN(人工神经网络)和NLR(非线性回归)方法建立区域化FDC模型;

b .比较这些方法对于区域化FDC分析的性能。

研究方法

研究选取伊朗中部纳马克湖流域的33个站点,主要数据是从伊朗水资源管理公司获得的逐日流量数据,所选河流没有明显的人为干扰(图1)。

b60e8932d194833747898f2c03259ffa.png

图1、研究地区

研究方法可以简单概括为如下4步:

(1)计算每个站点的年FDC;

(2)将每年的逐日流量升序排列,绘制每个有序观测值与其相应的超过概率的对比图;

(3)按照相对历时百分比将数据划分为5组,分别为Q2/Q10/Q20/Q50/Q90,例如90代表相对历时百分比为90%;

(4)建立SVR,ANN,NLR模型,比较对于区域化FDC分析的性能。

主要研究结果

表1 、NLR模型测试集和验证集的 对比结果 5c4646f3a782761208b744fefa5005a1.png

表2、ANN模型测试集和验证集的对比结果

69cd0cfa1ac6996822ed25c4b37d6221.png

表3、SVR模型测试集和验证集的对比结果

1e2f1a60be00ca3bae07bb552bc1e4ae.png

如表1、2、3所示,在5组数据中,在R2值方面SVR模型相较于ANN和NLR具有更好的结果;另一方面,除Q20(NSE=0.54)之外,SVR模型的NSE值均在0.75 - 0.85之间 ,SVR总体质量高于ANN模型;NLR模型的NSE值明显低于SVR和ANN模型;SVR模型在所有分组中性能表现均较好,并且RBF(Radial Basis)核函数更能反映实际情况。

5bd394a5cf30aa9ce5bda32224c99366.png

图2、NLR,ANN和SVR在测试期内为8所水文站提供的区域化FDC

表4、图2中使用的8所水文站编号及名称

925916d182ac3e003e84e62b4c0ef7a3.png

如图2所示,NLR高估了6所水文站的FDC;ANN高估了4所水文站的FDC;而SVR中仅有2所水文站有一定偏差,其余6所相对重合。

研究结论

(1)SVR模型在区域化FDC分析中比ANN和RNN具有更好的性能;

(2)SVR的RBF核函数更能反映实际情况。

04d9d147ca990c33570f826194ad1b16.png

原文链接

http://dx.doi.org/10.1029/2018WR024620

a28d4d70b7ce07e5338228f7950c6d30.png

你在看这篇文章吗

这篇关于支持向量回归_基于支持向量回归的区域化流量历时曲线分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688901

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个

poj 2195 bfs+有流量限制的最小费用流

题意: 给一张n * m(100 * 100)的图,图中” . " 代表空地, “ M ” 代表人, “ H ” 代表家。 现在,要你安排每个人从他所在的地方移动到家里,每移动一格的消耗是1,求最小的消耗。 人可以移动到家的那一格但是不进去。 解析: 先用bfs搞出每个M与每个H的距离。 然后就是网络流的建图过程了,先抽象出源点s和汇点t。 令源点与每个人相连,容量为1,费用为

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号