【Python基础】案例分析:泰坦尼克分析

2024-02-07 19:36

本文主要是介绍【Python基础】案例分析:泰坦尼克分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泰坦尼克分析

1 目的:

  • 熟悉数据集
  • 熟悉seaborn各种操作作
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
home = r'data'
df = sns.load_dataset('titanic', data_home=home)
df.head()
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maledeckembark_townalivealone
003male22.0107.2500SThirdmanTrueNaNSouthamptonnoFalse
111female38.01071.2833CFirstwomanFalseCCherbourgyesFalse
213female26.0007.9250SThirdwomanFalseNaNSouthamptonyesTrue
311female35.01053.1000SFirstwomanFalseCSouthamptonyesFalse
403male35.0008.0500SThirdmanTrueNaNSouthamptonnoTrue

2 数据整理

  • 缺省值统计
  • 缺省值处理:删除或补齐
  • 数据二次处理

2.1 统计缺省值计缺省值

df.isnull().sum()
survived         0
pclass           0
sex              0
age            177
sibsp            0
parch            0
fare             0
embarked         2
class            0
who              0
adult_male       0
deck           688
embark_town      2
alive            0
alone            0
dtype: int64

2.2 删除与填充

  • 删除deck列
pdata = df.drop('deck', axis=1)
pdata.head()
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maleembark_townalivealone
003male22.0107.2500SThirdmanTrueSouthamptonnoFalse
111female38.01071.2833CFirstwomanFalseCherbourgyesFalse
213female26.0007.9250SThirdwomanFalseSouthamptonyesTrue
311female35.01053.1000SFirstwomanFalseSouthamptonyesFalse
403male35.0008.0500SThirdmanTrueSouthamptonnoTrue
  • 年龄使用均值填充
#填充均值
pdata = pdata.fillna(pdata.mean(numeric_only=True)) #Notes:添加numeric_only=True只对数字做处理
#年龄分类
pdata['age_level'] = pd.cut(pdata.age,bins = [0,18,60,100], labels=['child','mid', 'old'])
pdata.head()
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maleembark_townalivealoneage_level
003male22.0107.2500SThirdmanTrueSouthamptonnoFalsemid
111female38.01071.2833CFirstwomanFalseCherbourgyesFalsemid
213female26.0007.9250SThirdwomanFalseSouthamptonyesTruemid
311female35.01053.1000SFirstwomanFalseSouthamptonyesFalsemid
403male35.0008.0500SThirdmanTrueSouthamptonnoTruemid

3 数据统计

3.1 基础数据统计

  • 年龄分布
  • 船舱人数分布
  • 男女分布
  • 团队人数分布

年龄较分散,使用直方图进行展示方图进行展示

sns.distplot(pdata.age)
 UserWarning: `distplot` is a deprecated function and will be removed in seaborn v0.14.0.Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751sns.distplot(pdata.age)<AxesSubplot: xlabel='age', ylabel='Density'>


sns.boxplot(pdata.age)
<AxesSubplot: ylabel='age'>


船舱人数,男女人数,团队人数(1个人,两个人,三个人对应的数量)使用柱状图进行展示

cols = ['sex', 'pclass', 'sibsp']
lens = len(cols)
plt.figure(figsize=(14,3))
for index, col in enumerate(cols):plt.subplot(1, lens,index+1)ax = sns.countplot(x=col, data=pdata)ax.set_title(col)


3.2 获救数据

  • 获救人数与遇难人数
  • 根据性别,统计获救与遇难人数
  • 根据年龄段,统计获救与遇难人数
  • 根据年龄段,性别,统计获救与遇难人数
  • 根据年龄段,性别,船舱,统计获救与遇难人数
sns.countplot(x='survived', data=pdata)
<AxesSubplot: xlabel='survived', ylabel='count'>


  • 根据性别进行分类
sns.countplot(x='sex', data=pdata, hue='survived')
<AxesSubplot: xlabel='sex', ylabel='count'>


  • 年龄与获救关系
sns.countplot(x='age_level', data=pdata, hue='survived')
<AxesSubplot: xlabel='age_level', ylabel='count'>


  • 性别,获救,年龄段,船舱获救统计
sns.catplot(x='sex', hue='survived', data=pdata, kind='count', col='age_level', row='pclass')
<seaborn.axisgrid.FacetGrid at 0x1d4d126dc10>


这篇关于【Python基础】案例分析:泰坦尼克分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688702

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、