SIMD学习笔记2:高斯卷积计算优化

2024-02-07 08:28

本文主要是介绍SIMD学习笔记2:高斯卷积计算优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://github.com/gredx/simd-parallel-conv
https://zhuanlan.zhihu.com/p/419806079
https://www.cnblogs.com/Imageshop/p/9069650.html
https://zhuanlan.zhihu.com/p/308004749
https://zhuanlan.zhihu.com/p/83694328

SSE图像算法优化系列十八:三次卷积插值的进一步SSE优化。
基于CPU SIMD和winograd的卷积计算加速技术_
如何学习SIMD(单指令多数据流)并应用?
SSE图像算法优化系列九:灵活运用SIMD指令16倍提升Sobel边缘检测的速度(4000*3000的24位图像时间由480ms降低到30ms)。
SSE图像算法优化系列二:高斯模糊算法的全面优化过程分享(一)。
数字图像处理之高斯滤波加速优化

Opencv findcontours函数原理,以及python numpy实现
AVX256加速矩阵乘法

microsoft/ DirectXMath github SIMD

我要实现循环卷积sse,暂时没有找到比较好的写法:

优化前

void gaussianConvolution(Matrix<double>& srcIamge, Matrix<double>& desImage, Matrix<double>& kernel)
{int kernelSize = kernel.numCols();//卷积填充int startOffset = -1 * int(kernelSize / 2);for (int i = 0; i < srcIamge.numRows(); i++){for (int j = 0; j < srcIamge.numCols(); j++){double blurredPixel = 0.0;for (int kx = 0; kx < kernelSize; kx++){for (int ky = 0; ky < kernelSize; ky++){int x = i + startOffset + kx, y = j + startOffset + ky;GetPixelWrapAround(srcIamge, x, y);blurredPixel += kernel.get(kx, ky)* srcIamge.get(x, y);}}desImage.set(i, j, blurredPixel);}}
}void  GetPixelWrapAround(const Matrix<double>& image, int& x, int& y)
{int w = image.numRows();int h = image.numCols();x = (x % w + w) % w;y = (y % h + h) % h;
}

sse优化后:

void greenNoise::gaussianConvolutionSSE(Matrix<double>& srcImage, Matrix<double>& desImage, Matrix<double>& kernel)
{int kernelSize = kernel.numCols();int width = srcImage.numRows();int height = srcImage.numCols();int startOffset = -1 * static_cast<int>(kernelSize / 2);double temp[4];for (int i = 0; i < width; i++){for (int j = 0; j < height; j++){double blurredPixel = 0.0;for (int kx = 0; kx < kernelSize; kx++){int x = (i + startOffset + kx + width) % width;for (int ky = 0; ky < kernelSize-3; ky+=4){//int y = (j + startOffset + ky + height) % height;int y0 = j + startOffset + ky + height;int y1 = (y0 + 1)% height;int y2 = (y0 + 2) % height;int y3 = (y0 + 3) % height;y0 = y0 % height;__m256d srcValues = _mm256_set_pd(srcImage.get(x, y0), srcImage.get(x, y1), srcImage.get(x, y2), srcImage.get(x, y3));__m256d kernelValues = _mm256_set_pd(kernel.get(kx, ky), kernel.get(kx, ky+1), kernel.get(kx, ky+2), kernel.get(kx, ky+3));__m256d resultVec = _mm256_mul_pd(srcValues, kernelValues);_mm256_storeu_pd(temp, resultVec);blurredPixel += temp[0]+ temp[1] + temp[2] + temp[3] ;}// Process the remaining elements (if any) without SSEfor (int ky = kernelSize - kernelSize % 4; ky < kernelSize; ++ky){int y = (j + startOffset + ky + height) % height;blurredPixel += kernel.get(kx, ky) * srcImage.get(x, y);}}desImage.set(i, j, blurredPixel);}}
}

加入多线程:

void greenNoise::parallelGaussianConvolutionSSE(Matrix<double>& srcImage, Matrix<double>& desImage, Matrix<double>& kernel)
{int kernelSize = kernel.numCols();int width = srcImage.numRows();int height = srcImage.numCols();int startOffset = -1 * static_cast<int>(kernelSize / 2);std::vector<std::thread> threads;//std::mutex mutex; // Mutex to control access to the result matrixconst int numThreads = std::thread::hardware_concurrency(); // Number of available threadsconst int rowsPerThread = (width + numThreads - 1) / numThreads; // Rows per threadfor (int t = 0; t < numThreads; ++t){threads.emplace_back([&srcImage, &desImage, &kernel, t, rowsPerThread,kernelSize, width, height, startOffset](){for (int i = t* rowsPerThread; i < std::min(width, (t +1)* rowsPerThread); i++){for (int j = 0; j < height; j++){double temp[4];double blurredPixel = 0.0;for (int kx = 0; kx < kernelSize; kx++){int x = (i + startOffset + kx + width) % width;for (int ky = 0; ky < kernelSize - 3; ky += 4){//int y = (j + startOffset + ky + height) % height;int y0 = j + startOffset + ky + height;int y1 = (y0 + 1) % height;int y2 = (y0 + 2) % height;int y3 = (y0 + 3) % height;y0 = y0 % height;__m256d srcValues = _mm256_set_pd(srcImage.get(x, y0), srcImage.get(x, y1), srcImage.get(x, y2), srcImage.get(x, y3));__m256d kernelValues = _mm256_set_pd(kernel.get(kx, ky), kernel.get(kx, ky + 1), kernel.get(kx, ky + 2), kernel.get(kx, ky + 3));__m256d resultVec = _mm256_mul_pd(srcValues, kernelValues);_mm256_storeu_pd(temp, resultVec);blurredPixel += temp[0] + temp[1] + temp[2] + temp[3];}// Process the remaining elements (if any) without SSEfor (int ky = kernelSize - kernelSize % 4; ky < kernelSize; ++ky){int y = (j + startOffset + ky + height) % height;blurredPixel += kernel.get(kx, ky) * srcImage.get(x, y);}}desImage.set(i, j, blurredPixel);}}});}for (auto& thread : threads){thread.join();}}

这篇关于SIMD学习笔记2:高斯卷积计算优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/687112

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx