相机图像质量研究(6)常见问题总结:光学结构对成像的影响--对焦距离

本文主要是介绍相机图像质量研究(6)常见问题总结:光学结构对成像的影响--对焦距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

相机图像质量研究(1)Camera成像流程介绍

相机图像质量研究(2)ISP专用平台调优介绍

相机图像质量研究(3)图像质量测试介绍

相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距

相机图像质量研究(5)常见问题总结:光学结构对成像的影响--景深

相机图像质量研究(6)常见问题总结:光学结构对成像的影响--对焦距离

相机图像质量研究(7)常见问题总结:光学结构对成像的影响--镜片固化

相机图像质量研究(8)常见问题总结:光学结构对成像的影响--工厂调焦

相机图像质量研究(9)常见问题总结:光学结构对成像的影响--工厂镜头组装

I相机图像质量研究(10)常见问题总结:光学结构对成像的影响--光圈

相机图像质量研究(11)常见问题总结:光学结构对成像的影响--像差

相机图像质量研究(12)常见问题总结:光学结构对成像的影响--炫光

相机图像质量研究(13)常见问题总结:光学结构对成像的影响--鬼影

相机图像质量研究(14)常见问题总结:光学结构对成像的影响--伪像

相机图像质量研究(15)常见问题总结:光学结构对成像的影响--暗角

相机图像质量研究(16)常见问题总结:光学结构对成像的影响--IRCUT

相机图像质量研究(17)常见问题总结:CMOS期间对成像的影响--靶面尺寸

相机图像质量研究(18)常见问题总结:CMOS期间对成像的影响--CFA

相机图像质量研究(19)常见问题总结:CMOS期间对成像的影响--Sensor Noise

相机图像质量研究(20)常见问题总结:CMOS期间对成像的影响--全局快门/卷帘快门

相机图像质量研究(21)常见问题总结:CMOS期间对成像的影响--隔行扫描/逐行扫描

相机图像质量研究(22)常见问题总结:CMOS期间对成像的影响--光学串扰

相机图像质量研究(23)常见问题总结:CMOS期间对成像的影响--紫晕

相机图像质量研究(24)常见问题总结:CMOS期间对成像的影响--摩尔纹

相机图像质量研究(25)常见问题总结:CMOS期间对成像的影响--过曝、欠曝

相机图像质量研究(26)常见问题总结:CMOS期间对成像的影响--坏点

相机图像质量研究(27)常见问题总结:补光灯以及遮光罩对成像的影响--遮光罩

相机图像质量研究(28)常见问题总结:补光灯以及遮光罩对成像的影响--补光灯

相机图像质量研究(29)常见问题总结:图像处理对成像的影响--图像插值Demosaic

相机图像质量研究(30)常见问题总结:图像处理对成像的影响--重影

相机图像质量研究(31)常见问题总结:图像处理对成像的影响--图像差

相机图像质量研究(32)常见问题总结:图像处理对成像的影响--振铃效应

相机图像质量研究(33)常见问题总结:图像处理对成像的影响--锯齿

相机图像质量研究(34)常见问题总结:图像处理对成像的影响--拖影

相机图像质量研究(35)常见问题总结:图像处理对成像的影响--运动噪声

相机图像质量研究(36)常见问题总结:编解码对成像的影响--块效应

相机图像质量研究(37)常见问题总结:编解码对成像的影响--条带效应

相机图像质量研究(38)常见问题总结:编解码对成像的影响--呼吸效应

相机图像质量研究(39)常见问题总结:编解码对成像的影响--运动模糊

相机图像质量研究(40)常见问题总结:显示器对成像的影响--画面泛白


目录

系列文章目录

前言

一、对焦距离


前言

        对焦距离的概念既用于摄像头开发,也用于专业摄影术语中。


一、对焦距离

        1,对焦距离概念

        对焦距离是指摄像头能合焦时,物象之间的距离,也就是物距加像距。这里合焦的意思和离焦(或者跑焦)相对,也就是成像时成为清晰的像。因此说对焦距离不能和拍摄距离弄混淆,因为有个前置条件时需要成清晰的像。

        2,对焦距离在摄像头开发中的应用

        对焦距离主要应用在定焦镜头的生产、变焦摄像头的自动变焦算法开发中。对于定焦摄像头,镜头生产的时候需要做点胶的操作,点胶前需要调焦,调焦的关键在于定对焦距离,不同的对焦距离的应用不同。对焦距离调的过远,可能近距离无法成像清晰,也就是近点距离过远。对于变焦镜头,变焦算法需要根据图像中选取的对焦点(通常手机摄像头拍摄中心的圆圈)的清晰程度调节对焦距离。当然,这里不管是定焦镜头或者变焦镜头,都是通过调节镜头到sensor靶面的距离从而调节对焦距离。

        3,对焦距离和景深的关系

        上一节说过景深的计算方法,其中主要说到景深和焦距和光圈的关系,但是其实其计算公式中也包含对焦距离,从公式也能看出,对焦距离L越大,景深越大。

        下图表示不同的对焦距离下前景深和后景深的关系。

红色表示后景深,绿色表示前景深

        

        


 总结

本节讲了相机对焦距离的概念,在工程中的应用,和景深的关系。

这篇关于相机图像质量研究(6)常见问题总结:光学结构对成像的影响--对焦距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/686486

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG