点云transformer算法: FlatFormer 论文阅读笔记

2024-02-06 12:12

本文主要是介绍点云transformer算法: FlatFormer 论文阅读笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码:
https://github.com/mit-han-lab/flatformer
论文:
https://arxiv.org/abs/2301.08739
[FlatFormer.pdf]

Flatformer是对点云检测中的 backbone3d部分的改进工作,主要在探究怎么高效的对点云应用transformer

具体的工作如下:
一个缩写:**PCTs 即point cloud transformers**
首先作者分析了点云transformer速度慢的原因(第三章):
最简单粗暴的是全局PCTs, 即对点云使用transformer的方式就是将每个点作为一个token,然后对一个pcd中所有点做multihead attention
比如一个pcd有10万个点,那就是10万个点做multihead attention计算,会很慢,复杂度为O(N2D),N是点数,D是每个点的特征通道数。作者分析了下,当点数到32k时,在NVIDIA A6000 GPU耗时就达到了1s,可见有多慢:
image.png
然后,为了降低耗时,有人提出了局部PCTs, 即对全局一共N个点,每个点都选择它附近的K个点做multihead attention计算,复杂度就变成了O(N
K2*D),N是点数,D是每个点的特征通道数,K是一个点附近点点数。然而,局部PCTs在邻居点准备方面存在显著的开销。由于点云的稀疏性和不规则性,涉及两个主要步骤:

  1. 找到每个点的邻居。
  2. 将数据从N×D格式重构为应用MHSA所需的N×K×D格式。

这些步骤很慢,需要大量时间。例如,在VoTr模型中,为Waymo上的单个场景准备邻居的步骤需要22毫秒(即总运行时间的36%),这已经比整个CenterPoint模型更慢。对于Point Transformer(PT)模型,准备邻居的成本可能占运行时间的高达70%。局部PCTs的单个层中的此开销可能超过CenterPoint模型的总运行时间。

然后又有人提出了窗口PCTs
SST(Swin Transformer in Point Cloud)是一种基于窗口的点云变换器,受到了Swin Transformers在各种视觉识别任务中取得的巨大成功的启发。其中,SST是代表性的工作之一。它首先将点云投影到鸟瞰空间(bird’s-eye-view, BEV),然后将BEV空间分割为形状相同且不重叠的窗口,并在每个窗口内应用MHSA(multihead attention)。与Swin Transformer类似,SST使用窗口移动来实现窗口之间的信息交换。
与图像不同,点云在空间中是稀疏且非均匀分布的。因此,每个窗口中的点数不同,并且可以相差两个数量级。由于普通的MHSA核心无法有效支持可变序列长度,SST将大小相似的窗口分批处理,并在每批中将所有窗口填充到批中的最大组大小(即填充到相同的长度)。然后,它单独在每个批次中应用MHSA。在实践中,这种填充引入了Waymo上1.7倍的计算开销。更糟糕的是,将点分配到相等的窗口还引入了显著的延迟开销:在Waymo上,每个场景需要18毫秒,甚至比CenterPoint模型的总运行时间还要慢。综上所述,填充和分区的开销使得SST不太适合硬件。

最后,作者基于上面这些问题,提出了自己模型(第四章): Flatformer
作者的核心工作可以用下面这个图来展现:
image.png
FlatFormer的基本构建块是Flattened Window Attention(FWA)。
我们只要看上面这个图的右半部分就行了,左半部分是作者用来做对对比的不好的方案
如图5r所示,FWA采用基于窗口的排序来展平点云,并将其分割为等大小的组,而不是等形状的窗口。这自然解决了组大小不平衡的问题,并避免了填充和分区的开销。
FWA然后在组内应用自注意力来提取局部特征,交替排序轴以聚合来自不同方向的特征,并移动窗口以在组之间交换特征。最后,作者提供了FWA的一个实现,进一步提高了其效率并减少了开销。

这篇关于点云transformer算法: FlatFormer 论文阅读笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684275

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第