绝对完美解决hdfs datanode数据和磁盘数据分布不均调整(hdfs balancer )——经验总结

本文主要是介绍绝对完美解决hdfs datanode数据和磁盘数据分布不均调整(hdfs balancer )——经验总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hadoop集群Datanode数据倾斜,个别节点hdfs空间使用率达到95%以上,于是新增加了三个Datenode节点,由于任务还在跑,数据在不断增加中,这几个节点现有的200GB空间估计最多能撑20小时左右,所以必须要进行balance操作。

通过观察磁盘使用情况,发现balance的速度明显跟不上新增数据的速度!!!

跟踪了一下balance的日志,发现两个问题:
一是balance时原有的十几个节点都被列入了待balance的节点中,上面的数据分块移动到新增加的3个节点上,由于节点多,最迫切需要balance的几个节点轮到的机会很少;
二是balance的速度太慢了,Hadoop集群为了防止balance影响吞吐、I/O性能,默认balance的速度为1MB,这样一共8TB的数据需要balance,这需要太长时间了。

于是针对上述问题,进行了如下尝试:

  • 提高blance的速度,将默认的balance速度从1MB/s增大到50MB/s
#set balance to 50M/s
[hdfs@sudops.com hadoop]$ hdfs dfsadmin -setBalancerBandwidth 52428800
Balancer bandwidth is set to 52428800 for nn01.sudops.com/10.233.100.161:9000
Balancer bandwidth is set to 52428800 for nn02.sudops.com/10.233.100.162:9000
  • 调整balance的平衡比例:

将原来的%5 提高到20%,调整原则就是尽量先让balance影响到最需要平衡数据的节点。

简单说明一下:原有集群的hdfs占用率为80%,新增加3个节点后,集群hdfs的整体占用量为70%, 如果比例是%5的话,那么原有节点都在这个调整范围内,所以各个节点都要被balance,而接受balance的节点只有三个,所以轮到迫切需要balance的节点的概率就比较小;
如果调整到20%,那么原来使用量小于90%的节点都不会被balance,那几台占用量90%以上的节点才会被最先balance,这样只有3个节点符合这个条件,balance的精确性就高了很多。

综合以上两点,balance的效果好多了,解决了最紧迫的节点的磁盘占满的问题,balance的速度终于快于新增数据,20%时需要balance的数据为6TB左右,待这次balance结束后,再运行一次%5的balance,还有2TB的数据要balance,这样经过两次的balance的操作,集群基本平衡了。


hdfs dfsadmin -setBalancerBandwidth 52428800nohup hdfs balancer -threshold 20 &tail -F nohup.out

一、概述

hdfs 需要存写大量文件,有时磁盘会成为整个集群的性能瓶颈,所以需要优化 hdfs 存取速度,将数据目录配置多磁盘,既可以提高并发存取的速度,还可以解决一块磁盘空间不够的问题

Hadoop 环境部署可以参考我之前的文章:大数据Hadoop之——Hadoop 3.3.4 HA(高可用)原理与实现(QJM)

二、Hadoop DataNode多目录磁盘配置

1)配置hdfs-site.xml

在配置文件中$HADOOP_HOME/etc/hadoop/hdfs-site.xml添加如下配置:

<!-- dfs.namenode.name.dir是保存FsImage镜像的目录,作用是存放hadoop的名称节点namenode里的metadata-->
<property><name>dfs.namenode.name.dir</name><value>file:/opt/bigdata/hadoop/hadoop-3.3.4/data/namenode</value>
</property>
<!-- 存放HDFS文件系统数据文件的目录(存储Block),作用是存放hadoop的数据节点datanode里的多个数据块。 -->
<property><name>dfs.datanode.data.dir</name><value>/data1,/data2,/data3,/data4</value>
</property><!-- 设置数据存储策略,默认为轮询,现在的情况显然应该用“选择空间多的磁盘存”模式 -->
<property><name>dfs.datanode.fsdataset.volume.choosing.policy</name><value>org.apache.hadoop.hdfs.server.datanode.fsdataset.AvailableSpaceVolumeChoosingPolicy</value>
</property><!-- 默认值0.75。它的含义是数据块存储到可用空间多的卷上的概率,由此可见,这个值如果取0.5以下,对该策略而言是毫无意义的,一般就采用默认值。-->
<property><name>dfs.datanode.available-space-volume-choosing-policy.balanced-space-preference-fraction</name><value>0.75f</value>
</property><!-- 配置各个磁盘的均衡阈值的,默认为10G(10737418240),在此节点的所有数据存储的目录中,找一个占用最大的,找一个占用最小的,如果在两者之差在10G的范围内,那么块分配的方式是轮询。 -->
<property><name>dfs.datanode.available-space-volume-choosing-policy.balanced-space-threshold</name>         <value>10737418240</value>
</property>

【温馨提示】此处的dfs.namenode.name.dirdfs.datanode.data.dir位置需要不一样,不能是一个文件夹,之前设置成一个文件夹报错ERROR org.apache.hadoop.hdfs.server.common.Storage: It appears that another node 1003@iZ2zeh8q22e14pvqr3bu01Z has already locked the storage directory:
【原因】是当namenode启动后,锁定了文件夹,导致datanode无法启动。

2)配置详解

1、 dfs.datanode.data.dir

HDFS数据应该存储Block的地方。可以是逗号分隔的目录列表(典型的,每个目录在不同的磁盘)。这些目录被轮流使用,一个块存储在这个目录,下一个块存储在下一个目录,依次循环。每个块在同一个机器上仅存储一份。不存在的目录被忽略。必须创建文件夹,否则被视为不存在。

2、dfs.datanode.fsdataset.volume.cho

这篇关于绝对完美解决hdfs datanode数据和磁盘数据分布不均调整(hdfs balancer )——经验总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681935

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

解决JavaWeb-file.isDirectory()遇到的坑问题

《解决JavaWeb-file.isDirectory()遇到的坑问题》JavaWeb开发中,使用`file.isDirectory()`判断路径是否为文件夹时,需要特别注意:该方法只能判断已存在的文... 目录Jahttp://www.chinasem.cnvaWeb-file.isDirectory()遇

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE