scrapy爬虫进阶案例--爬取前程无忧招聘信息

2024-02-05 08:59

本文主要是介绍scrapy爬虫进阶案例--爬取前程无忧招聘信息,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一次我们进行了scrapy的入门案例讲解,相信大家对此也有了一定的了解,详见新手入门的Scrapy爬虫操作–超详细案例带你入门。接下来我们再来一个案例来对scrapy操作进行巩固。

一、爬取的网站

这里我选择的是杭州数据分析的岗位,网址如下:https://search.51job.com/list/080200,000000,0000,32,9,99,%25E6%2595%25B0%25E6%258D%25AE%25E5%2588%2586%25E6%259E%2590,2,1.html?lang=c&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare=
在这里插入图片描述

二、爬取的详细步骤

这里基础的scrapy操作,如创建scrapy项目等就不赘述了。忘记的可以看我上一篇:新手入门的Scrapy爬虫操作–超详细案例带你入门
目标:将爬取的职位名,公司名,公司类型,薪资,工作信息(城市,经验,招聘人数,发布日期),职位信息,工作地址,工作详情连接,字段保存到mysql中。

1、爬取信息的分析过程

由于每一个职位的信息都不同,需要我们点击去跳转到职位详情页面去进行爬取。这里我们可以看到每一条岗位信息都对应一个div
在这里插入图片描述
点开div具体可以看到工作详情信息的链接,于是想到利用xpath获取到每一个岗位的详情链接然后进行跳转以便获取到所需的信息。
上面黑框是谷歌插件xpath helper,挺好用的,大家可以去下载一下。
这里有个小捷径,就是在你选择的元素上面右键点击复制xpath路径,就会获得该元素的xpath路径,然后再在上面进行修改获取所有的链接。

在这里插入图片描述
点击跳转进行到详情页面
对需要爬取的信息进行划分:
在这里插入图片描述

2、具体爬取代码

这里再介绍一下scrapy中文件的含义:

scrapy.cfg:项目的配置文件
spiders/:我们写的爬虫文件放置在这个文件夹下面,我这里是job_detail.py
init.py:一般为空文件,但是必须存在,没有__init__.py表明他所在的目录只是目录不是包
items.py:项目的目标文件,定义结构化字段,保存爬取的数据
middlewares.py:项目的中间件
pipelines.py:项目的管道文件
setting.py:项目的设置文件

(1)、编写items.py

需要爬取的字段:

import scrapyclass ScrapyjobItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()# 职位名positionName = scrapy.Field()# 公司名companyName = scrapy.Field()# 公司类型companyType = scrapy.Field()# 薪资salary = scrapy.Field()# 工作信息(城市,经验,招聘人数,发布日期)jobMsg = scrapy.Field()# 职位信息positionMsg = scrapy.Field()# 工作地址address = scrapy.Field()# 工作详情连接link = scrapy.Field()

(2)、编写spider文件夹下的爬虫文件

注意: 这里有一个坑,我之前在写allowed_domains时写的是www.search.51job.com后面发现在爬取数据的时候一直为空,后来百度搜了一下发现是我们从工作详情链接跳转时域名被被过滤了,不是在原来的域名下了,这里改成一级域名。

import scrapy
from scrapy_job.items import ScrapyjobItemclass JobSpiderDetail(scrapy.Spider):# 爬虫名称  启动爬虫时必要的参数name = 'job_detail'allowed_domains = ['51job.com']  # 二次迭代时域名被过滤了  改成一级域名# 起始的爬取地址start_urls = ['https://search.51job.com/list/080200,000000,0000,32,9,99,%25E6%2595%25B0%25E6%258D%25AE%25E5%2588%2586%25E6%259E%2590,2,1.html?lang=c&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare=']# 找到详细职位信息的链接 进行跳转def parse(self, response):# 找到工作的详情页地址,传递给回调函数parse_detail解析node_list = response.xpath("//div[2]/div[4]")for node in node_list:# 获取到详情页的链接link = node.xpath("./div/div/a/@href").get()print(link)if link:yield scrapy.Request(link, callback=self.parse_detail)# 设置翻页爬取# 获取下一页链接地址next_page = response.xpath("//li[@class='bk'][last()]/a/@href").get()if next_page:# 交给schedule调度器进行下一次请求                     开启不屏蔽过滤yield scrapy.Request(next_page, callback=self.parse, dont_filter=True)# 该函数用于提取详细页面的信息def parse_detail(self, response):item = ScrapyjobItem()# 详细页面的职业信息  item['positionName'] = response.xpath("//div[@class='cn']/h1/@title").get()item['companyName'] = response.xpath("//div[@class='com_msg']//p/text()").get()item['companyType'] = response.xpath("//div[@class='com_tag']//p/@title").extract()item['salary'] = response.xpath("//div[@class='cn']/strong/text()").get()item['jobMsg'] = response.xpath("//p[contains(@class, 'msg')]/@title").extract()item['positionMsg'] = response.xpath("//div[contains(@class, 'job_msg')]//text()").extract()item['address'] = response.xpath("//p[@class='fp'][last()]/text()").get()item['link'] = response.url# print(item['positionMsg'])yield item

(3)、编写pipelines.py

# 在 pipeline.py 文件中写一个中间件把数据保存在MySQL中
class MysqlPipeline(object):# from_crawler 中的参数crawler表示这个项目本身# 通过crawler.settings.get可以读取settings.py文件中的配置信息@classmethoddef from_crawler(cls, crawler):cls.host = crawler.settings.get('MYSQL_HOST')cls.user = crawler.settings.get('MYSQL_USER')cls.password = crawler.settings.get('MYSQL_PASSWORD')cls.database = crawler.settings.get('MYSQL_DATABASE')cls.table_name = crawler.settings.get('MYSQL_TABLE_NAME')return cls()# open_spider表示在爬虫开启的时候调用此方法(如开启数据库)def open_spider(self, spider):# 连接数据库self.db = pymysql.connect(self.host, self.user, self.password, self.database, charset='utf8')self.cursor = self.db.cursor()# process_item表示在爬虫的过程中,传入item,并对item作出处理def process_item(self, item, spider):# 向表中插入爬取的数据  先转化成字典data = dict(item)table_name = self.table_namekeys = ','.join(data.keys())values = ','.join(['%s'] * len(data))sql = 'insert into %s (%s) values (%s)' % (table_name, keys, values)self.cursor.execute(sql, tuple(data.values()))self.db.commit()return item# close_spider表示在爬虫结束的时候调用此方法(如关闭数据库)def close_spider(self, spider):self.db.close()# 写一个管道中间件StripPipeline清洗空格和空行
class StripPipeline(object):def process_item(self, item, job_detail):item['positionName'] = ''.join(item['positionName']).strip()item['companyName'] = ''.join(item['companyName']).strip()item['companyType'] = '|'.join([i.strip() for i in item['companyType']]).strip().split("\n")item['salary'] = ''.join(item['salary']).strip()item['jobMsg'] = ''.join([i.strip() for i in item['jobMsg']]).strip()item['positionMsg'] = ''.join([i.strip() for i in item['positionMsg']]).strip()item['address'] = ''.join(item['address']).strip()return item

(4)、设置settings.py

# Obey robots.txt rules
ROBOTSTXT_OBEY = False# 把我们刚写的两个管道文件配置进去,数值越小优先级越高
# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {# 'scrapy_qcwy.pipelines.ScrapyQcwyPipeline': 300,'scrapy_qcwy.pipelines.MysqlPipeline': 200,'scrapy_qcwy.pipelines.StripPipeline': 199,
}# Mysql 配置
MYSQL_HOST = 'localhost'
MYSQL_USER = 'root'
MYSQL_PASSWORD = 'root'
MYSQL_DATABASE = 'qcwy'
MYSQL_TABLE_NAME = 'job_detail'

查看数据库结果

在这里插入图片描述
在这里插入图片描述

这篇关于scrapy爬虫进阶案例--爬取前程无忧招聘信息的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680398

相关文章

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

C#读取本地网络配置信息全攻略分享

《C#读取本地网络配置信息全攻略分享》在当今数字化时代,网络已深度融入我们生活与工作的方方面面,对于软件开发而言,掌握本地计算机的网络配置信息显得尤为关键,而在C#编程的世界里,我们又该如何巧妙地读取... 目录一、引言二、C# 读取本地网络配置信息的基础准备2.1 引入关键命名空间2.2 理解核心类与方法

使用Python检查CPU型号并弹出警告信息

《使用Python检查CPU型号并弹出警告信息》本教程将指导你如何编写一个Python程序,该程序能够在启动时检查计算机的CPU型号,如果检测到CPU型号包含“I3”,则会弹出一个警告窗口,感兴趣的小... 目录教程目标方法一所需库步骤一:安装所需库步骤二:编写python程序步骤三:运行程序注意事项方法二

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可