MMLAB的实例分割算法mmsegmentation

2024-02-05 04:12

本文主要是介绍MMLAB的实例分割算法mmsegmentation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        当谈及实例分割时,人们往往只会提到一些早期的经典算法,比如 PSP-Net、DeepLabv3、DeepLabv3+ 和 U-Net。然而,实例分割领域已经在过去的五六年中蓬勃发展,涌现出许多新的算法。今天,让我们一起探索这个算法库,它包含了众多最新的实例分割算法。后面,我将会为大家详细介绍如何使用这个算法库。总的来说,若你关注实例分割领域的最新进展,这个算法库值得你拥有。

1、目前支持的算法:


- [x] [SAN (CVPR'2023)](configs/san/)
- [x] [VPD (ICCV'2023)](configs/vpd)
- [x] [DDRNet (T-ITS'2022)](configs/ddrnet)
- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [K-Net (NeurIPS'2021)](configs/knet)
- [x] [SegFormer (NeurIPS'2021)](configs/segformer)
- [x] [Segmenter (ICCV'2021)](configs/segmenter)
- [x] [DPT (ArXiv'2021)](configs/dpt)
- [x] [SETR (CVPR'2021)](configs/setr)
- [x] [STDC (CVPR'2021)](configs/stdc)
- [x] [BiSeNetV2 (IJCV'2021)](configs/bisenetv2)
- [x] [CGNet (TIP'2020)](configs/cgnet)
- [x] [PointRend (CVPR'2020)](configs/point_rend)
- [x] [DNLNet (ECCV'2020)](configs/dnlnet)
- [x] [OCRNet (ECCV'2020)](configs/ocrnet)
- [x] [ISANet (ArXiv'2019/IJCV'2021)](configs/isanet)
- [x] [Fast-SCNN (ArXiv'2019)](configs/fastscnn)
- [x] [FastFCN (ArXiv'2019)](configs/fastfcn)
- [x] [GCNet (ICCVW'2019/TPAMI'2020)](configs/gcnet)
- [x] [ANN (ICCV'2019)](configs/ann)
- [x] [EMANet (ICCV'2019)](configs/emanet)
- [x] [CCNet (ICCV'2019)](configs/ccnet)
- [x] [DMNet (ICCV'2019)](configs/dmnet)
- [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
- [x] [DANet (CVPR'2019)](configs/danet)
- [x] [APCNet (CVPR'2019)](configs/apcnet)
- [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
- [x] [EncNet (CVPR'2018)](configs/encnet)
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
- [x] [UPerNet (ECCV'2018)](configs/upernet)
- [x] [ICNet (ECCV'2018)](configs/icnet)
- [x] [PSANet (ECCV'2018)](configs/psanet)
- [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)

方法

时间

题目

dsdl

Standard Description Language for DataSet

san

2013

Side adapter network for open-vocabulary semantic segmentation

unet

2015

U-net: Convolutional networks for biomedical image segmentation

erfnet

2017

Erfnet: Efficient residual factorized convnet for real-time semantic segmentation

fcn

2017

Fully convolutional networks for semantic segmentation

pspnet

2017

Pyramid Scene Parsing Network

bisenetv1_r18-d32

2018

Bisenet: Bilateral segmentation network for real-time semantic segmentation

encnet

2018

Context Encoding for Semantic Segmentation

icnet_r50-d8

2018

Icnet for real-time semantic segmentation on high-resolution images

nonlocal

2018

Non-local neural networks

psanet

2018

Psanet: Point-wise spatial attention network for scene parsing

upernet

2018

Unified perceptual parsing for scene understanding

ann

2019

Asymmetric non-local neural networks for semantic segmentation

apcnet

2019

Adaptive Pyramid Context Network for Semantic Segmentation

ccnet

2019

CCNet: Criss-Cross Attention for Semantic Segmentation

danet

2019

Dual Attention Network for Scene Segmentation

emanet_r50-d8

2019

Expectation-maximization attention networks for semantic segmentation

fastfcn

2019

Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation

fast_scnn

2019

Fast-scnn: Fast semantic segmentation network

hrnet

2019

Deep High-Resolution Representation Learning for Human Pose Estimation

gcnet

2019

Gcnet: Non-local networks meet squeeze-excitation networks and beyond

sem_fpn

2019

Panoptic feature pyramid networks

cgNet

2020

Cgnet: A light-weight context guided network for semantic segmentation

dnlnet

2020

Disentangled Non-Local Neural Networks

ocrnet

2020

Object-Contextual Representations for Semantic Segmentation

pointrend

2020

Pointrend: Image segmentation as rendering

setr

2020

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

bisenetv2

2021

Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation

dpt

2021

Vision Transformers for Dense Prediction

isanet_r50-d8

2021

OCNet: Object Context for Semantic Segmentation

knet

2021

{K-Net: Towards} Unified Image Segmentation

mae

2021

Masked autoencoders are scalable vision learners

mask2former

2021

Per-Pixel Classification is Not All You Need for Semantic Segmentation

maskformer

2021

Per-pixel classification is not all you need for semantic segmentation

segformer

2021

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

segmenter

2021

Segmenter: Transformer for semantic segmentation

stdc

2021

Rethinking BiSeNet For Real-time Semantic Segmentation

Beit

2022

{BEiT}: {BERT} Pre-Training of Image Transformers

convnext

2022

A ConvNet for the 2020s

ddrnet

2022

Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes

pidnet

2022

PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller

poolformer

2022

Metaformer is actually what you need for vision

segnext

2022

SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation

VPD

2023

Unleashing Text-to-Image Diffusion Models for Visual Perception

2、支持的骨干网络:

- [x] ResNet (CVPR'2016)
- [x] ResNeXt (CVPR'2017)
- [x] [HRNet (CVPR'2019)](configs/hrnet)
- [x] [ResNeSt (ArXiv'2020)](configs/resnest)
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
- [x] [Vision Transformer (ICLR'2021)](configs/vit)
- [x] [Swin Transformer (ICCV'2021)](configs/swin)
- [x] [Twins (NeurIPS'2021)](configs/twins)
- [x] [BEiT (ICLR'2022)](configs/beit)
- [x] [ConvNeXt (CVPR'2022)](configs/convnext)
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
- [x] [SegNeXt (NeurIPS'2022)](configs/segnext)

3、支持的数据集:


- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isaid)
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
- [x] [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#levir-cd)
- [x] [BDD100K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#bdd100K)
- [x] [NYU](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nyu)

4、自定义个人任务:

当然如果以上无法满足,这里面提供了详细的教程与方便的接口,以供制作自己的数据集和设计自己的算法、主干网络、损失函数等。

5、参考文章:

  1. Welcome to MMSegmentation’s documentation! — MMSegmentation 1.2.2 documentation
  2. open-mmlab/mmsegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. (github.com)

这篇关于MMLAB的实例分割算法mmsegmentation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/679726

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: