卷积神经网络(CNN)使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类(代码➕注释)

本文主要是介绍卷积神经网络(CNN)使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类(代码➕注释),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、CNN概述

二、CNN网络结构

三、CNN常见名词

四、使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类


一、CNN概述

        卷积神经网络 ( Convolutional Neural NetworkCNN) 作为人工神经网络中一种常见的深度学习架构,该网络是受到生物自然视觉认知机制启发而来,是一种特殊的多层前馈神经网络, CNN 是由简单的神经网络改进而来,使用卷积层和池化层替代全连接层结构,卷积层能够有效地将图像中的各种特征提取出并生成特征图。广泛应用于图像识别图像分类等领域 ,具有良好的扩展性和鲁棒性,截至目前,CNN 的深度呈不断增加的趋势

        CNN在图像分类识别中要做的事情是:给定一张图片,图片中是牛还是马不知道,是什么牛也不知道,现在需要模型判断这张图片里具体是一个什么东西,总之输出一个结果:如果是牛的话,那是什么牛?

【1】鲁棒性也称作健壮性(英语:Robustness一个系统或组织有抵御或克服不利条件的能力。鲁棒性则常被用来描述可以面对复杂适应系统的能力,需要更全面的对系统进行考虑。

二、CNN网络结构

1)输入层(Input layer),众多神经元(Neuron)接受大量非线形输入讯息。输入的讯息称为输入向量。

2)卷积层:是一块一块地来进行比对。它拿来比对的这个“小块”我们称之为Features,每一个feature就像是一个小图,对图像和滤波矩阵做内积(逐个元素相乘再求和)的操作就是所谓的卷积”操作,也是卷积神经网络的名字来源。

【1】卷积:滤波器filter与数据窗口做内积(在CNN中,滤波器filter带着一组固定权重的神经元)对局部输入数据进行卷积计算。每计算完一个数据窗口内的局部数据后,数据窗口不断平移滑动,直到计算完所有数据

3)池化pool层:保留主要的特征进一步删减冗余参数,提高特征提取效率。池化,简言之,即取区域平均或最大。

5)全连接层:就是把特征整合到一起(高度提纯特征),方便交给最后的分类器或者回归。

三、CNN常见名词

1感受野:某一个输出层的一个元素对应输入层的区域大小,被称为感受野,即输出层的一个元素在输入层上的映射区域。

2激活函数:常用的非线性激活函数有sigmoidtanhrelu等等,前两者sigmoid/tanh比较常见于全连接层,后者relu常见于卷积层。

四、使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类

主要步骤是:

1. 加载和预处理CIFAR-10数据集
2. 定义卷积神经网络 ConvNet 模型
3. 定义交叉熵损失函数和SGD优化器
4. 训练模型50个epoch
5. 打印训练损失并完成训练

import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torchvision 
import torchvision.transforms as transforms
import matplotlib.pyplot as plt# 训练数据
transform = transforms.Compose([transforms.ToTensor(),     # 转为tensortransforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])   # 归一化trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)    # 测试数据    
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False)  classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')# 卷积神经网络定义
class ConvNet(nn.Module):def __init__(self):super(ConvNet, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))    # 2层卷积池化x = self.pool(F.relu(self.conv2(x)))    # 2层卷积池化x = x.view(-1, 16 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return xmodel = ConvNet()
criterion = nn.CrossEntropyLoss()       # 损失函数定义
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)   # 优化器定义# 训练网络
for epoch in range(50):   # 50个epochrunning_loss = 0.0for i, data in enumerate(trainloader, 0):   # 遍历训练集inputs, labels = dataoptimizer.zero_grad()    # 梯度清零outputs = model(inputs)  # 神经网络前向传播loss = criterion(outputs, labels)    # 计算损失loss.backward()         # 反向传播optimizer.step()        # 更新参数running_loss += loss.item() # 累加损失loss = running_loss/len(trainset) # 打印Lossprint(f'Epoch {epoch+1}, Loss: {loss}') print('Finished Training')

这篇关于卷积神经网络(CNN)使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类(代码➕注释)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/679583

相关文章

Java中的Cursor使用详解

《Java中的Cursor使用详解》本文介绍了Java中的Cursor接口及其在大数据集处理中的优势,包括逐行读取、分页处理、流控制、动态改变查询、并发控制和减少网络流量等,感兴趣的朋友一起看看吧... 最近看代码,有一段代码涉及到Cursor,感觉写法挺有意思的。注意是Cursor,而不是Consumer

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

Python3脚本实现Excel与TXT的智能转换

《Python3脚本实现Excel与TXT的智能转换》在数据处理的日常工作中,我们经常需要将Excel中的结构化数据转换为其他格式,本文将使用Python3实现Excel与TXT的智能转换,需要的可以... 目录场景应用:为什么需要这种转换技术解析:代码实现详解核心代码展示改进点说明实战演练:从Excel到

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下