卷积神经网络(CNN)使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类(代码➕注释)

本文主要是介绍卷积神经网络(CNN)使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类(代码➕注释),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、CNN概述

二、CNN网络结构

三、CNN常见名词

四、使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类


一、CNN概述

        卷积神经网络 ( Convolutional Neural NetworkCNN) 作为人工神经网络中一种常见的深度学习架构,该网络是受到生物自然视觉认知机制启发而来,是一种特殊的多层前馈神经网络, CNN 是由简单的神经网络改进而来,使用卷积层和池化层替代全连接层结构,卷积层能够有效地将图像中的各种特征提取出并生成特征图。广泛应用于图像识别图像分类等领域 ,具有良好的扩展性和鲁棒性,截至目前,CNN 的深度呈不断增加的趋势

        CNN在图像分类识别中要做的事情是:给定一张图片,图片中是牛还是马不知道,是什么牛也不知道,现在需要模型判断这张图片里具体是一个什么东西,总之输出一个结果:如果是牛的话,那是什么牛?

【1】鲁棒性也称作健壮性(英语:Robustness一个系统或组织有抵御或克服不利条件的能力。鲁棒性则常被用来描述可以面对复杂适应系统的能力,需要更全面的对系统进行考虑。

二、CNN网络结构

1)输入层(Input layer),众多神经元(Neuron)接受大量非线形输入讯息。输入的讯息称为输入向量。

2)卷积层:是一块一块地来进行比对。它拿来比对的这个“小块”我们称之为Features,每一个feature就像是一个小图,对图像和滤波矩阵做内积(逐个元素相乘再求和)的操作就是所谓的卷积”操作,也是卷积神经网络的名字来源。

【1】卷积:滤波器filter与数据窗口做内积(在CNN中,滤波器filter带着一组固定权重的神经元)对局部输入数据进行卷积计算。每计算完一个数据窗口内的局部数据后,数据窗口不断平移滑动,直到计算完所有数据

3)池化pool层:保留主要的特征进一步删减冗余参数,提高特征提取效率。池化,简言之,即取区域平均或最大。

5)全连接层:就是把特征整合到一起(高度提纯特征),方便交给最后的分类器或者回归。

三、CNN常见名词

1感受野:某一个输出层的一个元素对应输入层的区域大小,被称为感受野,即输出层的一个元素在输入层上的映射区域。

2激活函数:常用的非线性激活函数有sigmoidtanhrelu等等,前两者sigmoid/tanh比较常见于全连接层,后者relu常见于卷积层。

四、使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类

主要步骤是:

1. 加载和预处理CIFAR-10数据集
2. 定义卷积神经网络 ConvNet 模型
3. 定义交叉熵损失函数和SGD优化器
4. 训练模型50个epoch
5. 打印训练损失并完成训练

import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torchvision 
import torchvision.transforms as transforms
import matplotlib.pyplot as plt# 训练数据
transform = transforms.Compose([transforms.ToTensor(),     # 转为tensortransforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])   # 归一化trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)    # 测试数据    
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False)  classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')# 卷积神经网络定义
class ConvNet(nn.Module):def __init__(self):super(ConvNet, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))    # 2层卷积池化x = self.pool(F.relu(self.conv2(x)))    # 2层卷积池化x = x.view(-1, 16 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return xmodel = ConvNet()
criterion = nn.CrossEntropyLoss()       # 损失函数定义
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)   # 优化器定义# 训练网络
for epoch in range(50):   # 50个epochrunning_loss = 0.0for i, data in enumerate(trainloader, 0):   # 遍历训练集inputs, labels = dataoptimizer.zero_grad()    # 梯度清零outputs = model(inputs)  # 神经网络前向传播loss = criterion(outputs, labels)    # 计算损失loss.backward()         # 反向传播optimizer.step()        # 更新参数running_loss += loss.item() # 累加损失loss = running_loss/len(trainset) # 打印Lossprint(f'Epoch {epoch+1}, Loss: {loss}') print('Finished Training')

这篇关于卷积神经网络(CNN)使用PyTorch实现卷积神经网络对CIFAR-10数据集进行图片分类(代码➕注释)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/679583

相关文章

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB