EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction

2024-02-04 23:44

本文主要是介绍EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction

[Paper Link]

最近在调研一些多模态大模型相关的论文,发现Arxiv上出的论文根本看不过来,遂决定开辟一个新坑《一页PPT说清一篇论文》。自己在读论文的过程中会用一页PPT梳理其脉络和重点信息,旨在帮助自己和读者快速了解一篇论文。
论文PPT在GitHub中:https://github.com/FutureForMe/One_Page_PPT_Report_Paper,欢迎Star~

在这里插入图片描述

这篇关于EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/679154

相关文章

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

LLM应用实战: 产业治理多标签分类

数据介绍 标签体系 产业治理方面的标签体系共计200+个,每个标签共有4个层级,且第3、4层级有标签含义的概括信息。 原始数据 企业官网介绍数据,包括基本介绍、主要产品等 企业专利数据,包括专利名称和专利摘要信息,且专利的数据量大。 LLM选型 经调研,采用Qwen2-72B-Instruct-GPTQ-Int4量化版本,占用显存更少,且效果与非量化相当,

LLM大模型教程:langchain 教程

软件安装 pip install pymupdfpip install langchainpip install langchain-cliconda install -c pytorch -c nvidia faiss-gpu=1.7.4 mkl=2021 blas=1.0=mkl 由于langchain不支持qwen模型,我们需要自定义模型 from typing import A

LLM模型:代码讲解Transformer运行原理

视频讲解、获取源码:LLM模型:代码讲解Transformer运行原理(1)_哔哩哔哩_bilibili 1 训练保存模型文件 2 模型推理 3 推理代码 import torchimport tiktokenfrom wutenglan_model import WutenglanModelimport pyttsx3# 设置设备为CUDA(如果可用),否则使用CPU#

MACS bdgdiff: Differential peak detection based on paired four bedGraph files.

参考原文地址:[http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html](http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html) 文章目录 一、MACS bdgdiff 简介DESCRIPTION 二、用法

Neighborhood Homophily-based Graph Convolutional Network

#paper/ccfB 推荐指数: #paper/⭐ #pp/图结构学习 流程 重定义同配性指标: N H i k = ∣ N ( i , k , c m a x ) ∣ ∣ N ( i , k ) ∣ with c m a x = arg ⁡ max ⁡ c ∈ [ 1 , C ] ∣ N ( i , k , c ) ∣ NH_i^k=\frac{|\mathcal{N}(i,k,c_{

[论文笔记] LLM大模型剪枝篇——2、剪枝总体方案

https://github.com/sramshetty/ShortGPT/tree/main My剪枝方案(暂定):         剪枝目标:1.5B —> 100~600M         剪枝方法:                 层粒度剪枝                 1、基于BI分数选择P%的冗余层,P=60~80                 2、对前N%冗余层,

jmeter压力测试,通过LLM利用RAG实现知识库问答,NEO4J部署,GraphRAG以知识图谱在查询时增强提示实现更准确的知识库问答(9/7)

前言         这周也是杂七杂八的一天(高情商:我是一块砖,哪里需要往哪里搬),首先是接触了jemter这个压力测试工具,然后帮公司的AIGC项目编写使用手册和问答手册的第一版,并通过这个平台的智能体实现知识库问答的功能展示,以及部分个人扩展和思考(NEO4J创建知识图谱的GraphRAG)。 Jmeter         Jmeter是一个压力测试工具,一开始导师叫我熟悉的时候我还说