递推化简+线段树区间维护,P6477 [NOI Online #2 提高组] 子序列问题

2024-02-04 04:04

本文主要是介绍递推化简+线段树区间维护,P6477 [NOI Online #2 提高组] 子序列问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目

1.1题目背景

2s 512M

1.2题目描述

给定一个长度为 n n n 的正整数序列 A 1 A_1 A1, A 2 A_2 A2, ⋯ \cdots , A n A_n An。定义一个函数 f ( l , r ) f(l,r) f(l,r) 表示:序列中下标在 [ l , r ] [l,r] [l,r] 范围内的子区间中,不同的整数个数。换句话说, f ( l , r ) f(l,r) f(l,r) 就是集合 { A l , A l + 1 , ⋯ , A r } \{A_l,A_{l+1},\cdots,A_r\} {Al,Al+1,,Ar} 的大小,这里的集合是不可重集,即集合中的元素互不相等。

现在,请你求出 ∑ l = 1 n ∑ r = l n ( f ( l , r ) ) 2 \sum_{l=1}^n\sum_{r=l}^n (f(l,r))^2 l=1nr=ln(f(l,r))2。由于答案可能很大,请输出答案对 1 0 9 + 7 10^9 +7 109+7 取模的结果。

1.3输入格式

第一行一个正整数 n n n,表示序列的长度。

第二行 n n n 个正整数,相邻两个正整数用空格隔开,表示序列 A 1 A_1 A1, A 2 A_2 A2, ⋯ \cdots , A n A_n An

1.4输出格式

仅一行一个非负整数,表示答案对 1 0 9 + 7 10^9+7 109+7 取模的结果。

1.5样例 #1

样例输入 #1

4
2 1 3 2

样例输出 #1

43

样例 #2

样例输入 #2

3
1 1 1

样例输出 #2

6

1.6提示

对于 10 % 10\% 10% 的数据,满足 1 ≤ n ≤ 10 1 \leq n \leq 10 1n10

对于 30 % 30\% 30% 的数据,满足 1 ≤ n ≤ 100 1 \leq n \leq 100 1n100

对于 50 % 50\% 50% 的数据,满足 1 ≤ n ≤ 1 0 3 1\leq n \leq 10^3 1n103

对于 70 % 70\% 70% 的数据,满足 1 ≤ n ≤ 1 0 5 1 \leq n \leq 10^5 1n105

对于 100 % 100\% 100% 的数据,满足 1 ≤ n ≤ 1 0 6 1\leq n\leq 10^6 1n106,集合中每个数的范围是 [ 1 , 1 0 9 ] [1,10^9] [1,109]

1.7原题链接

https://www.luogu.com.cn/problem/P6477


二、解题报告

1、思路分析

1e6数据量,必须想出O(N)或者O(NlogN)的解法,不然肯定过不了

我们发现a[r]对于f(l , r)的影响为:即a[r]上一次出现位置为last[a[r]],那么f(i , r)都+1,i >= last[a[r]] + 1,其它f值都不变

这样我们似乎可以得出某种递推关系,我们令g® = Σf(l , r)^2

那么g® - g(r - 1) = Σf(l , r) ^ 2 - f(l , r - 1) ^ 2,其中last[a[r]] + 1 <= l <= r

进一步化简:g(r ) - g(r - 1) = Σf(l , r) * 2 + r - last[a[r]]

这样一来,我们就把平方和转化为线性和

我们只需要用线段树存储f(l , r),其中l >= 1,即可,然后每求一次g®都对[last[a[r]] + 1 , r]区间+1

每次求g®只需要知道g(r - 1)和线段树对应区间和,这一步是O(logn),枚举右端点是O(n),整体O(nlogn)

2、复杂度

时间复杂度:O(nlogn) 空间复杂度:O(n)

3、代码详解

#include <iostream>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define lc p << 1
#define rc p << 1 | 1
#define int long long
const int N = 1e6 + 5, MOD = 1e9 + 7;
int a[N], b[N], last[N], d[N];
struct Node
{int l, r, s, add;
} tr[N << 2];void build(int p, int l, int r)
{tr[p] = {l, r, 0, 0};if (l == r)return;int mid = (l + r) >> 1;build(lc, l, mid), build(rc, mid + 1, r);
}void pushup(int p)
{tr[p].s = tr[lc].s + tr[rc].s;
}void pushdown(int p)
{if (tr[p].add){tr[lc].s += (tr[lc].r - tr[lc].l + 1) * tr[p].add, tr[rc].s += (tr[rc].r - tr[rc].l + 1) * tr[p].add;tr[lc].add += tr[p].add, tr[rc].add += tr[p].add;tr[p].add = 0;}
}void update(int p, int l, int r, int k)
{if (l <= tr[p].l && tr[p].r <= r){tr[p].s += (tr[p].r - tr[p].l + 1) * k;tr[p].add += k;return;}int mid = (tr[p].l + tr[p].r) >> 1;pushdown(p);if (l <= mid)update(lc, l, r, k);if (r > mid)update(rc, l, r, k);pushup(p);
}int query(int p, int l, int r)
{if (l <= tr[p].l && r >= tr[p].r)return tr[p].s;int mid = (tr[p].l + tr[p].r) >> 1, ret = 0;pushdown(p);if (l <= mid)ret += query(lc, l, r);if (r > mid)ret += query(rc, l, r);return ret;
}int read()
{int s = 0, w = 1;char ch = getchar();while (ch < '0' || ch > '9')w *= (ch == '-' ? -1 : 1), ch = getchar();while (ch >= '0' && ch <= '9')s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar();return s * w;
}void write(int x)
{if (x < 0)putchar('-');if (x > 9)write(x / 10);putchar((x % 10) ^ 48);
}signed main()
{// freopen("in.txt", "r", stdin);int n = read();for (int i = 1; i <= n; i++)a[i] = read(), b[i] = a[i];sort(b + 1, b + n + 1);int m = unique(b + 1, b + n + 1) - b - 1;for (int i = 1, k; i <= n; i++){k = lower_bound(b + 1, b + m + 1, a[i]) - b;d[i] = last[k];last[k] = i;}int ans = 0;build(1, 1, n);for (int i = 1, cur = 0; i <= n; i++){cur += i - d[i] + (query(1, d[i] + 1, i) << 1);cur %= MOD;ans = (ans + cur) % MOD;update(1, d[i] + 1, i, 1);}write(ans);return 0;
}

这篇关于递推化简+线段树区间维护,P6477 [NOI Online #2 提高组] 子序列问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676305

相关文章

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu