从分形图片用Box counting方法计算分形维数的一个例子

2024-02-04 01:18

本文主要是介绍从分形图片用Box counting方法计算分形维数的一个例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击打开链接

l dimension of natural objects from digital images

up vote 42 down vote favorite
18

This is a useful topic. A college physics lab, medical diagnostics, urban growth, etc. - there is a lot of applications. On this site by Paul Bourke about Google Earth fractals we can get a high resolution images (in this post they are low res - import from source for experiments). For example, around Lake Nasser in Egypt:

img = Import["http://paulbourke.net/fractals/googleearth/egypt2.jpg"]

Lake Nasser boundary

The simplest method I know is Box Counting Method which has a lot of shortcomings. We start from extracting the boundary - which is the fractal object:

{Binarize[img], iEdge = EdgeDetect[Binarize[img]]}

outline of Lake Nasser

Now we could partition image into boxes and see how many boxes have at least 1 white pixel. This is a very rudimentary implementation:

MinS = Floor[Min[ImageDimensions[iEdge]]/2];
data = ParallelTable[{1/size, Total[Sign /@ (Total[#, 2] & /@ (ImageData /@ Flatten[ImagePartition[iEdge, size]]))]}, {size, 10, MinS/2, 10}];

From this the slope is 1.69415 which is a fractal dimension that makes sense

line = Fit[Log[data], {1, x}, x]

13.0276 + 1.69415 x

Plot[line, {x, -6, -2}, Epilog -> Point[Log[FDL]], PlotStyle -> Red, Frame -> True, Axes -> False]

plot of fractal dimension line

Benchmark: if I run this on high res of Koch snowflake i get something like ~ 1.3 with more exact number being 4/log 3 ≈ 1.26186.

Question: can we improve or go beyond the above box counting method?

All approaches are acceptable if they find fractal dimension from any image of natural fractal.

share edit flag
 
2
 
You have a lot of programs in mathematica to measure fractal dimensions and multi fractal spectrum of an image in the book: Fractal Geography, Andre Dauphine, Wiley, 2012 See the book on the Wolfram Mathematica | Books or Amazon ![enter image description here](wolfram.com/books/profile.cgi?id=8108)–   Dauphine  Oct 16 '12 at 9:32 

You can still use box count, but doing it smarter :)

Counting boxes with at least 1 white pixel from ImagePartition can be done more efficiently usingIntegral Image, a technique used by Viola-Jones (2004) in their now popular face recognition framework. For a mathematical motivation (and proof), Viola and Jones point to this source.

Actually, someone already asked about a Mathematica implementation here.

What Integral Image allows you to do is to compute efficiently the total mass of any rectangle in an image. So, you can define the following:

IntegralImage[d_] := Map[Accumulate, d, {0, 1}];
data = ImageData[ColorConvert[iEdge, "Grayscale"]]; (* iEdge: your snowflake image *)
ii = IntegralImage[data];

Then, the mass (white content) of a region, is

(* PixelCount: total mass in region delimited by two corner points, given ii, the IntegralImage *)
PixelCount[ii_, {p0x_, p0y_}, {p1x_, p1y_}] := ii[[p1x, p1y]] + ii[[p0x, p0y]] - ii[[p1x, p0y]] - ii[[p0x, p1y]];

So, instead of partitioning the image using ImagePartition, you can get a list of all the boxes of a given size by

PartitionBoxes[{rows_, cols_}, size_] := Transpose /@ Tuples[{Partition[Range[1, rows, size], 2, 1], Partition[Range[1, cols, size], 2, 1]}];

If you apply PixelCount to above, as in your algorithm, you should have the same data but calculated faster.

PixelCountsAtSize[{rows_, cols_}, ii_, size_] :=((PixelCount [ii, #1, #2] &) @@ # &) /@ PartitionBoxes[{rows, cols}, size];

Following your approach here, we should then do

fractalDimensionData = Table[{1/size, Total[Sign /@ PixelCountsAtSize[Dimensions[ii], ii, size]]}, {size, 3, Floor[Min[Dimensions[ii]]/10]}];
line = Fit[Log[fractalDimensionData], {1, x}, x]Out:= 10.4414 + 1.27104 x

which is very close to the actual fractal dimension of the snowflake (which I used as input).

Two things to note. Because this is faster, I dared to generate the table at box size 3. Also, unlike ImagePartition, my partition boxes are all of the same size and therefore, it excludes uneven boxes at the edges. So, instead of doing minSize/2 as you did, I put minSize/10 - excluding bigger and misleading values for big boxes.

Hope this helps.

Update

Just ran the algorithm starting with 2 and got this 10.4371 + 1.27008 x. And starting with 1 is 10.4332 + 1.26919 x, much better. Of course, it takes longer but still under or around 1 min for your snowflake image.

Update 2

And finally, for your image from Google Earth (eqypt2.jpg) the output is (starting at 1-pixel boxes)

12.1578 + 1.47597 x

It ran in 43.5 secs in my laptop. Using ParallelTable is faster: around 28 secs.

share edit flag
 
 
There isn't a "snowflake" image. All three images come from the same object (and I guess the fractal dimension should be the same for all of them) –   belisarius  Dec 23 '13 at 21:03
upvote
  flag
@belisarius, the PO published a Koch snowflake image as Benchmark (see last part of post) and that's the one I used. I called it 'snowflake' for short. On the other hand, this is still a numerical procedure, so the numbers will be different depending on approximation. The Update2 refers to the eqypt2.jpg image, also made available by the PO, as he asked for an improvement suitable for real-life images. –   caya  Dec 23 '13 at 22:40
 
sorry, I missed that link. Thanks –   belisarius  Dec 24 '13 at 0:05
 
+1 This is very neat @caya, thank you! I will wait "a bit" hoping that someone can implement things likewavelet multi-fractals or similar. –   Vitaliy Kaurov  Feb 14 at 20:02 
 
@VitaliyKaurov, glad you liked it. Note that Viola & Jones rightly pointed out a link between integral imageand Haar wavelet basis in their paper; although this wasn't explored further. It is unclear to me the link between the paper you mentioned and fractal dimension, but certainly worth reading as I am interested in these kind of problems. Cheers. –   caya  Feb 16 at 12:40

这篇关于从分形图片用Box counting方法计算分形维数的一个例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675982

相关文章

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

idea maven编译报错Java heap space的解决方法

《ideamaven编译报错Javaheapspace的解决方法》这篇文章主要为大家详细介绍了ideamaven编译报错Javaheapspace的相关解决方法,文中的示例代码讲解详细,感兴趣的... 目录1.增加 Maven 编译的堆内存2. 增加 IntelliJ IDEA 的堆内存3. 优化 Mave

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Spring Security方法级安全控制@PreAuthorize注解的灵活运用小结

《SpringSecurity方法级安全控制@PreAuthorize注解的灵活运用小结》本文将带着大家讲解@PreAuthorize注解的核心原理、SpEL表达式机制,并通过的示例代码演示如... 目录1. 前言2. @PreAuthorize 注解简介3. @PreAuthorize 核心原理解析拦截与

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释