GEE数据集——全球排放数据(Climate TRACE 气候追踪)全面核算温室气体(GHG)排放量

本文主要是介绍GEE数据集——全球排放数据(Climate TRACE 气候追踪)全面核算温室气体(GHG)排放量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

气候追踪全球排放数据


Climate TRACE 是一个非营利性联盟,它发布了一个开放式排放数据库,其中包含超过 3.52 亿项资产。该数据库主要根据直接、独立的观测结果,全面核算温室气体(GHG)排放量。它包括世界上每一个国家和地区,涵盖各种排放活动,如能源生产、工业流程和土地利用。这些数据来自卫星、遥感以及其他公共和商业来源,使其成为有史以来最全面、最细化的近期温室气体排放数据集。通过该清单,可以对各国实现减排目标的进展情况进行透明的评估。前言 – 人工智能教程

欲了解更多详细信息,请访问气候 TRACE 网站 http://climatetrace.org。

数据集预处理


对下载的数据集进行处理,以获得系统:时间起点(system:time_start)和系统:时间终点(system:time_end)的纪元时间,并将其添加到 GEE 的数据列中。每个部门及其相关排放数据集源都经过处理,共提供 38,731,650 个特征。并非所有部门都有排放地点,有些部门只提供了国家层面的数据。

Citation¶
Climate TRACE - Tracking Realtime Atmospheric Carbon Emissions (2022), Climate TRACE Emissions Inventory,
https://climatetrace.org [Date Accessed].
Metadata Descriptors¶

Expand to show data attributes and definitions for the emissions database

数据属性

Data-attributeDefinition
source_idThe internal Climate TRACE identifier for each individual source of emissions.
source_nameName of the entity or source that produced the emissions.
source_typeDescription of the emission source classification.
iso3_countryCorresponds to the ISO 3166-1 alpha-3 specification of the country where the entity is physically located.
original_inventory_sectorIntergovernmental Panel on Climate Change (IPCC) emissions sector to which the emissions source belongs.
start_timeThe time using Coordinated Universal Time (UTC) of emissions, either as an instance of start time of observation.
end_timeThe time using Coordinated Universal Time (UTC) of emissions, either as an instance of end time of observation.
latApproximate latitude location of the source.
lonApproximate longitude location of the source.
geometry_refCorresponds to the reference id t

这篇关于GEE数据集——全球排放数据(Climate TRACE 气候追踪)全面核算温室气体(GHG)排放量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675532

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav