Iceberg从入门到精通系列之二十三:Spark查询

2024-02-03 16:36

本文主要是介绍Iceberg从入门到精通系列之二十三:Spark查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Iceberg从入门到精通系列之二十三:Spark查询

  • 一、使用 SQL 查询
  • 二、使用 DataFrame 进行查询
  • 三、Time travel
  • 四.Incremental read
  • 五、检查表
  • 六、History
  • 七、元数据日志条目
  • 八、Snapshots
  • 九、Files
  • 十、Manifests
  • 十一、Partitions
  • 十二、所有元数据表
  • 十三、参考
  • 十四、使用元数据表进行时间旅行

要在 Spark 中使用 Iceberg,请首先配置 Spark 目录。 Iceberg 使用 Apache Spark 的 DataSourceV2 API 来实现数据源和目录。

一、使用 SQL 查询

在 Spark 3 中,表使用包含目录名称的标识符。

SELECT * FROM prod.db.table; -- catalog: prod, namespace: db, table: table

元数据表(例如历史记录和快照)可以使用 Iceberg 表名称作为命名空间。

例如,要从文件元数据表中读取 prod.db.table:

SELECT * FROM prod.db.table.files;

在这里插入图片描述

二、使用 DataFrame 进行查询

使用DataFrame进行查询

val df = spark.table("prod.db.table")

使用 DataFrameReader 的目录

路径和表名可以使用 Spark 的 DataFrameReader 接口加载。如何加载表取决于如何指定标识符。当使用spark.read.format(“iceberg”).load(table)或spark.table(table)时,表变量可以采用多种形式,如下所示:

  • file:///path/to/table:在给定路径加载 HadoopTable
  • tablename:加载currentCatalog.currentNamespace.tablename
  • Catalog.tablename:从指定目录加载表名。
  • namespace.tablename:从当前目录加载namespace.tablename
  • Catalog.namespace.tablename:从指定目录加载namespace.tablename。
  • namespace1.namespace2.tablename:从当前目录加载namespace1.namespace2.tablename

上面的列表是按优先顺序排列的。例如:匹配的目录将优先于任何名称空间解析。

三、Time travel

1.SQL
Spark 3.3 及更高版本支持使用 TIMESTAMP AS OF 或 VERSION AS OF 子句在 SQL 查询中进行时间旅行。 VERSION AS OF 子句可以包含长快照 ID 或字符串分支或标记名称。

注意:如果分支或标签的名称与快照 ID 相同,则选择进行时间旅行的快照是具有给定快照 ID 的快照。例如,考虑这样的情况:有一个名为“1”的标签,它引用 ID 为 2 的快照。如果版本旅行子句是 VERSION AS OF“1”,则将对 ID 为 1 的快照进行时间旅行。如果如果不需要,请使用明确定义的前缀(例如“snapshot-1”)重命名标记或分支。

-- time travel to October 26, 1986 at 01:21:00
SELECT * FROM prod.db.table TIMESTAMP AS OF '1986-10-26 01:21:00';-- time travel to snapshot with id 10963874102873L
SELECT * FROM prod.db.table VERSION AS OF 10963874102873;-- time travel to the head snapshot of audit-branch
SELECT * FROM prod.db.table VERSION AS OF 'audit-branch';-- time travel to the snapshot referenced by the tag historical-snapshot
SELECT * FROM prod.db.table VERSION AS OF 'historical-snapshot';

此外,还支持 FOR SYSTEM_TIME AS OF 和 FOR SYSTEM_VERSION AS OF 子句:

SELECT * FROM prod.db.table FOR SYSTEM_TIME AS OF '1986-10-26 01:21:00';
SELECT * FROM prod.db.table FOR SYSTEM_VERSION AS OF 10963874102873;
SELECT * FROM prod.db.table FOR SYSTEM_VERSION AS OF 'audit-branch';
SELECT * FROM prod.db.table FOR SYSTEM_VERSION AS OF 'historical-snapshot';

时间戳也可以作为 Unix 时间戳提供,以秒为单位:

-- timestamp in seconds
SELECT * FROM prod.db.table TIMESTAMP AS OF 499162860;
SELECT * FROM prod.db.table FOR SYSTEM_TIME AS OF 499162860;

2.DataFrame

要在 DataFrame API 中选择特定表快照或某个时间的快照,Iceberg 支持四种 Spark 读取选项:

  • snapshot-id 选择特定的表快照
  • as-of-timestamp 选择时间戳处的当前快照(以毫秒为单位)
  • 分支选择指定分支的头快照。请注意,当前分支不能与 as-of 时间戳组合。
  • tag 选择与指定标签关联的快照。标签不能与当前时间戳组合。
// time travel to October 26, 1986 at 01:21:00
spark.read.option("as-of-timestamp", "499162860000").format("iceberg").load("path/to/table")
// time travel to snapshot with ID 10963874102873L
spark.read.option("snapshot-id", 10963874102873L).format("iceberg").load("path/to/table")
// time travel to tag historical-snapshot
spark.read.option(SparkReadOptions.TAG, "historical-snapshot").format("iceberg").load("path/to/table")
// time travel to the head snapshot of audit-branch
spark.read.option(SparkReadOptions.BRANCH, "audit-branch").format("iceberg").load("path/to/table")

Spark 3.0及更早版本不支持在DataFrameReader命令中使用带表的选项。所有选项都将被默默忽略。尝试时间旅行或使用其他选项时请勿使用表格。请参阅 SPARK-32592。

四.Incremental read

要增量读取附加数据,请使用:

  • start-snapshot-id 增量扫描中使用的启动快照 ID(独占)。
  • end-snapshot-id 增量扫描(含)中使用的结束快照 ID。这是可选的。省略它将默认为当前快照。
// get the data added after start-snapshot-id (10963874102873L) until end-snapshot-id (63874143573109L)
spark.read().format("iceberg").option("start-snapshot-id", "10963874102873").option("end-snapshot-id", "63874143573109").load("path/to/table")

目前仅获取追加操作的数据。不支持替换、覆盖、删除操作。增量读取适用于 V1 和 V2 格式版本。 Spark的SQL语法不支持增量读取。

五、检查表

要检查表的历史记录、快照和其他元数据,Iceberg 支持元数据表。

元数据表通过在原表名后添加元数据表名来标识。例如,使用 db.table.history 读取 db.table 的历史记录。

对于 Spark 3(3.2 之前的版本),Spark 会话目录不支持具有多部分标识符的表名称,例如 Catalog.database.table.metadata。作为解决方法,请配置 org.apache.iceberg.spark.SparkCatalog,或使用 Spark DataFrameReader API。

六、History

显示表历史记录:

SELECT * FROM prod.db.table.history;

在这里插入图片描述

七、元数据日志条目

显示表元数据日志条目:

SELECT * from prod.db.table.metadata_log_entries;

在这里插入图片描述

八、Snapshots

显示表的有效快照:

SELECT * FROM prod.db.table.snapshots;

在这里插入图片描述
您还可以将快照加入表历史记录中。例如,此查询将显示表历史记录,以及写入每个快照的应用程序 ID:

selecth.made_current_at,s.operation,h.snapshot_id,h.is_current_ancestor,s.summary['spark.app.id']
from prod.db.table.history h
join prod.db.table.snapshots son h.snapshot_id = s.snapshot_id
order by made_current_at

在这里插入图片描述

九、Files

显示表的当前文件:

SELECT * FROM prod.db.table.files;

在这里插入图片描述
内容是指数据文件存储的内容类型: 0 数据 1 位置删除 2 相等删除

要仅显示数据文件或删除文件,请分别查询 prod.db.table.data_files 和 prod.db.table.delete_files。要显示所有跟踪快照中的所有文件、数据文件和删除文件,请分别查询 prod.db.table.all_files、prod.db.table.all_data_files 和 prod.db.table.all_delete_files。

十、Manifests

要显示表的当前文件清单:

SELECT * FROM prod.db.table.manifests;

在这里插入图片描述

  • 清单表的partition_summaries列中的字段对应于清单列表中的field_summary结构,顺序如下:
    • 包含空值
    • 包含_nan
    • 下界
    • 上限
  • contains_nan 可能返回 null,这表明该信息无法从文件的元数据中获得。当从 V1 表读取时,通常会发生这种情况,其中 contains_nan 未填充。

十一、Partitions

显示表的当前分区:

SELECT * FROM prod.db.table.partitions;

在这里插入图片描述

对于未分区表,分区表将不包含分区和spec_id字段。

分区元数据表显示当前快照中包含数据文件或删除文件的分区。但是,不应用删除文件,因此在某些情况下,即使分区的所有数据行都被删除文件标记为已删除,也可能会显示分区。

十二、所有元数据表

这些表是特定于当前快照的元数据表的并集,并返回所有快照的元数据。

“所有”元数据表可能会为每个数据文件或清单文件生成多于一行,因为元数据文件可能是多个表快照的一部分。

所有数据文件
要显示表的所有数据文件和每个文件的元数据:

SELECT * FROM prod.db.table.all_data_files;

在这里插入图片描述

All Manifests
要显示表的所有清单文件:

SELECT * FROM prod.db.table.all_manifests;

在这里插入图片描述
清单表的partition_summaries列中的字段对应于清单列表中的field_summary结构,顺序如下:

  • 包含空值
  • 包含_nan
  • 下界
  • 上限

contains_nan 可能返回 null,这表明该信息无法从文件的元数据中获得。当从 V1 表读取时,通常会发生这种情况,其中 contains_nan 未填充。

十三、参考

要显示表的已知快照引用:

SELECT * FROM prod.db.table.refs;

在这里插入图片描述
使用 DataFrame 检查
可以使用 DataFrameReader API 加载元数据表:

// named metastore table
spark.read.format("iceberg").load("db.table.files")
// Hadoop path table
spark.read.format("iceberg").load("hdfs://nn:8020/path/to/table#files")

十四、使用元数据表进行时间旅行

要使用时间旅行功能检查表的元数据:

-- get the table's file manifests at timestamp Sep 20, 2021 08:00:00
SELECT * FROM prod.db.table.manifests TIMESTAMP AS OF '2021-09-20 08:00:00';-- get the table's partitions with snapshot id 10963874102873L
SELECT * FROM prod.db.table.partitions VERSION AS OF 10963874102873;

还可以使用 DataFrameReader API 通过时间旅行来检查元数据表:

// load the table's file metadata at snapshot-id 10963874102873 as DataFrame
spark.read.format("iceberg").option("snapshot-id", 10963874102873L).load("db.table.files")

这篇关于Iceberg从入门到精通系列之二十三:Spark查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674744

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0