Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2

本文主要是介绍Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 使用入口

  • DistributedOptimizer类定义在megatron/optimizer/distrib_optimizer.py文件中。创建的入口是在megatron/optimizer/__init__.py文件中的get_megatron_optimizer函数中。根据传入的args.use_distributed_optimizer参数来判断是用DistributedOptimizer还是Float16OptimizerWithFloat16Params
def get_megatron_optimizer(model,no_weight_decay_cond=None,scale_lr_cond=None,lr_mult=1.0):...# Megatron optimizer.opt_ty = DistributedOptimizer \if args.use_distributed_optimizer else \Float16OptimizerWithFloat16Paramsreturn opt_ty(optimizer,args.clip_grad,args.log_num_zeros_in_grad,params_have_main_grad,args.use_contiguous_buffers_in_local_ddp,args.fp16,args.bf16,args.params_dtype,grad_scaler,model)
  • 相关的Optimizer的使用参考【Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1】

2. 初始化init源码说明

在这里插入图片描述

  • 初始化的过程很大程度对应的上图grad buffer分片的实现,对应init函数如下:
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,params_have_main_grad, use_contiguous_buffers_in_local_ddp,fp16, bf16, params_dtype, grad_scaler, models):
  • init时会通过build_model_gbuf_range_map函数先创建grad buffer的范围映射,也就是对应图中的world_index/local_index/param_index三个。这里的self.models是一个list类型,对于使用了interleave流水线方式的训练来说,这里的self.models中会保存多份model, 其余情况list中只有一个元素。
        # Model grad buffer ranges.self.model_gbuf_ranges = []for model_index, model in enumerate(self.models):self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
  • build_model_gbuf_range_map会依次按grad buffer中类型来进行range的初始化build_model_gbuf_range。这里定义了一个单独的Range类。
@classmethoddef build_model_gbuf_range_map(cls, model):"""Create param-to-grad-buffer mappings, for grad buffer data typeswithin a specific virtual model."""return {dtype : cls.build_model_gbuf_range(model, dtype)for dtype in model._grad_buffers}class Range:"""A range represents a start and end points for indexing a shardfrom a full tensor."""def __init__(self, start, end):self.start = startself.end = endself.size = end - startdef normalize(self, start = 0):return Range(start, start + self.size)def __str__(self):return "%d,%d [%d]" % (self.start, self.end, self.size)def __len__(self):return self.end - self.start
  • build_model_gbuf_range初始化range的流程如下:
    • 获取DP的rank,计算单个Grad buffer切片的大小
    • 保存当前rank的world range和local range, 分别对应world index和local index
    • 计算param的range范围,对应param index
    • 返回当前rank的相关range范围
    @classmethoddef build_model_gbuf_range(cls, model, dtype):# 获取DP的rankdata_parallel_rank = mpu.get_data_parallel_rank()data_parallel_world_size = mpu.get_data_parallel_world_size()# 计算单个Grad buffer切片的大小grad_buffer = model._grad_buffers[dtype]gbuf_size = grad_buffer.numelmax_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))# 跟据DDP的rank总数,分别计算每个rank对应的全局rangegbuf_world_all_ranges = []for r in range(data_parallel_world_size):gbuf_world_start = r * max_gbuf_range_sizegbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)gbuf_world_all_ranges.append(gbuf_world_range)# 保存当前rank的world range和local range# Local DP's ranges.gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]gbuf_local_range = gbuf_world_range.normalize()# 计算param的range范围param_range_map = cls.build_model_gbuf_param_range_map(model,dtype,gbuf_world_range)# Group into dict.data = {"local" : gbuf_local_range,"world" : gbuf_world_range,"world_all" : gbuf_world_all_ranges,"param_map" : param_range_map,"max_range_size" : max_gbuf_range_size,}return data
  • 接着会根据当前rank相关的Range内容self.model_gbuf_ranges调用build_model_param_gbuf_map函数,主要作用是创建model_gbuf_ranges的逆映射,保存param->(modex_index, type)的映射。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...self.model_param_gbuf_map = \self.build_model_param_gbuf_map(self.model_gbuf_ranges)...def build_model_param_gbuf_map(cls, model_gbuf_ranges):"""Create a reverse of the model_gbuf_ranges, for referencing inopposite direction."""param_gbuf_map = {}for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):for dtype, gbuf_range_map in model_gbuf_range_map.items():for param, param_range_map in gbuf_range_map["param_map"].items():param_gbuf_map[param] = (model_index, dtype)return param_gbuf_map
  • self.build_model_param_gbuf_map之后是初始化Optimizer对应的local group range,Optimizer原本有param_groups包括多个参数组,这里build_optimizer_group_ranges为了创建param参数到group_index的map映射,也就是<model_parameter:group_index>;self.build_model_param_gbuf_map最后对每个group_range中增加新的orig_grouporig_group_idx两个key,原来group_range初始化的时候只有params一个key
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# Optimizer ranges.self.model_param_group_index_map, self.opt_group_ranges = \self.build_optimizer_group_ranges(self.optimizer.param_groups,self.model_gbuf_ranges)...def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):# 获取param_groups中组的个数num_groups = len(param_groups)# 创建全局的参数到group_index的map映射,也就是<model_parameter:group_index>world_param_group_map = {}for group_index, group in enumerate(param_groups):for param in group["params"]:assert param.requires_gradworld_param_group_map[param] = group_index# 创建当前rank的local_param_group_map, local_param_group_map是param与(group_index, group_params_len)的映射, local_param_group_map虽然返回了但后面没用local_param_group_map = {}group_ranges = [ {"params": []} for _ in param_groups ]for model_gbuf_range_map in model_gbuf_ranges:for dtype, gbuf_range_map in model_gbuf_range_map.items():for param in gbuf_range_map["param_map"]:group_index = world_param_group_map[param]group_range = group_ranges[group_index]group_range["params"].append(param)local_param_group_map[param] = \(group_index, len(group_range["params"]) - 1)# Squeeze zero-size group ranges.for group_index, group_range in enumerate(group_ranges):group_range["orig_group"] = param_groups[group_index]group_range["orig_group_idx"] = param_groups[group_index]return local_param_group_map, group_ranges
  • 在初始化Optimizer之后,是通过创建self.build_model_and_main_param_groups创建optimizer step要用到的main parameter groups, 这里的group一方面是要进行reduce和gather通信操作,另一方面是被优化器用于梯度的更新操作。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# Allocate main param shards.(self.model_float16_groups,self.model_fp32_groups,self.shard_float16_groups,self.shard_fp32_groups,self.shard_fp32_from_float16_groups,) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,self.model_param_gbuf_map,self.opt_group_ranges)...
  • self.build_model_and_main_param_groups的实现主要是关于fp32/fp16/bf16三种类型训练时优化器内的显存分配。
    @classmethoddef build_model_and_main_param_groups(cls,model_gbuf_ranges,param_gbuf_map,opt_group_ranges):...# 保存原本fp16类型parammodel_float16_groups = []# 保存原本fp32类型parammodel_fp32_groups = []# 保存原本fp16类型param的切片shard_float16_groups = []# 保存原本fp32类型param的切片shard_fp32_groups = []# 保存原本fp16类型param的fp32类型param的副本shard_fp32_from_float16_groups = []# 分配每个group的param参数切片for group_index, group_range in enumerate(opt_group_ranges):for model_param in group_range["params"]:if model_param.type() in ['torch.cuda.HalfTensor','torch.cuda.BFloat16Tensor']:# 如果是fp16/bf16类型参数,clone为fp32类型的切片.shard_model_param = model_param.detach().view(-1) \[param_range.start:param_range.end]shard_main_param = shard_model_param.clone().float()...# 添加到group中model_float16_params_this_group.append(model_param)shard_float16_params_this_group.append(shard_model_param)shard_fp32_from_float16_params_this_group.append(shard_main_param)elif model_param.type() == 'torch.cuda.FloatTensor':# 如果是fp32类型参数,不进行clone,直接引用shard_model_param = model_param.view(-1) \[param_range.start:param_range.end]model_fp32_params_this_group.append(model_param)shard_fp32_params_this_group.append(shard_model_param)...# 更新优化器的参数group_range["orig_group"]["params"] = [*shard_fp32_params_this_group,*shard_fp32_from_float16_params_this_group,]return (model_float16_groups,model_fp32_groups,shard_float16_groups,shard_fp32_groups,shard_fp32_from_float16_groups,)
  • 在Optimizer init中,接下来是初始化self.param_buffers,这里的self.param_buffers是DDP模型的grad buffer的view示图,跟grad buffer共享存储,但是用自己的数据类型;最后更新优化器的param_groups。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# 初始化self.param_buffersself.param_buffers = []for model_index, model in enumerate(self.models):current_param_buffers = {}for dtype, grad_buffer in model._grad_buffers.items():# 获取存储,这里是兼容的写法.try:storage = grad_buffer.data.storage()._untyped()except:storage = grad_buffer.data.storage().untyped()# 基于grad_buffer的storage创建param_buffer类型,这里的params_dtype是参数类型; 这里的torch.tensor没有autograd的历史。param_buffer = torch.tensor(storage,dtype = params_dtype,device = grad_buffer.data.device)param_buffer = param_buffer[:grad_buffer.numel_padded]# 这里的dtype是grad_buffer的类型current_param_buffers[dtype] = param_bufferself.param_buffers.append(current_param_buffers)# 最后更新优化器的param_groupsself.optimizer.param_groups = \[ g["orig_group"] for g in self.opt_group_ranges ]self.optimizer.load_state_dict(self.optimizer.state_dict())

3. 参考

  • Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1
  • NVIDIA/Megatron-LM

这篇关于Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674206

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2