本文主要是介绍华为开源自研AI框架昇思MindSpore应用案例:ResNet50迁移学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
- 一、环境准备
- 1.进入ModelArts官网
- 2.使用CodeLab体验Notebook实例
- 二、数据准备
- 下载数据集
- 三、加载数据集
- 数据集可视化
- 四、训练模型
- 构建Resnet50网络
- 模型微调
- 训练和评估
- 可视化模型预测
- 固定特征进行训练
- 可视化模型预测
在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。
如果你对MindSpore感兴趣,可以关注昇思MindSpore社区
一、环境准备
1.进入ModelArts官网
云平台帮助用户快速创建和部署模型,管理全周期AI工作流,选择下面的云平台以开始使用昇思MindSpore,获取安装命令,安装MindSpore2.0.0-alpha版本,可以在昇思教程中进入ModelArts官网
选择下方CodeLab立即体验
等待环境搭建完成
2.使用CodeLab体验Notebook实例
下载NoteBook样例代码,ResNet50迁移学习 ,.ipynb
为样例代码
选择ModelArts Upload Files上传.ipynb
文件
选择Kernel环境
切换至GPU环境,切换成第一个限时免费
进入昇思MindSpore官网,点击上方的安装
获取安装命令
回到Notebook中,在第一块代码前加入命令
conda update -n base -c defaults conda
安装MindSpore 2.0 GPU版本
conda install mindspore=2.0.0a0 -c mindspore -c conda-forge
安装mindvision
pip install mindvision
二、数据准备
下载数据集
下载案例所用到的狗与狼分类数据集,数据集中的图像来自于ImageNet,每个分类有大约120张训练图像与30张验证图像。使用download接口下载数据集,并将下载后的数据集自动解压到当前目录下。
安装下载download
pip install download
from download import downloaddataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"download(dataset_url, "./datasets-Canidae", kind="zip")
数据集的目录结构如下:
datasets-Canidae/data/
└── Canidae├── train│ ├── dogs│ └── wolves└── val├── dogs└── wolves
三、加载数据集
狼狗数据集提取自ImageNet分类数据集,使用mindspore.dataset.ImageFolderDataset接口来加载数据集,并进行相关图像增强操作。
首先执行过程定义一些输入:
数据集可视化
从mindspore.dataset.ImageFolderDataset接口中加载的训练数据集返回值为字典,用户可通过 create_dict_iterator 接口创建数据迭代器,使用 next 迭代访问数据集。本章中 batch_size 设为18,所以使用 next 一次可获取18个图像及标签数据。
四、训练模型
本章使用ResNet50模型进行训练。搭建好模型框架后,通过将pretrained参数设置为True来下载ResNet50的预训练模型并将权重参数加载到网络中。
构建Resnet50网络
模型微调
由于ResNet50中的预训练模型是针对ImageNet数据集中的1000个类别进行分类的,在本章只对狼和狗两个类别进行分类,所以需要重置预训练模型中的分类器,然后重新微调网络。
训练和评估
训练并评估网络,且在训练完成后,保存评估精度最高的ckpt文件(resnet50-best.ckpt)到当前路径的/BestCheckpoint下,保存路径和ckpt文件名可自行调整。
可视化模型预测
定义 visualize_mode 函数,可视化模型预测。
固定特征进行训练
使用固定特征进行训练的时候,需要冻结除最后一层之外的所有网络层。通过设置 requires_grad == False 冻结参数,以便不在反向传播中计算梯度。
可视化模型预测
使用固定特征得到的best.ckpt文件对对验证集的狼和狗图像数据进行预测。若预测字体为蓝色即为预测正确,若预测字体为红色则预测错误。
这篇关于华为开源自研AI框架昇思MindSpore应用案例:ResNet50迁移学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!