OpenCV+ moviepy + tkinter 视频车道线智能识别项目源码

2024-02-02 23:04

本文主要是介绍OpenCV+ moviepy + tkinter 视频车道线智能识别项目源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目完整源代码,使用 OpenCV 的Hough 直线检测算法,提取出道路车道线并绘制出来。通过tkinter 提供GUI界面展示效果。
在这里插入图片描述

1、导入相关模块

import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import matplotlib.image as mpimg
from moviepy.editor import VideoFileClip
import math

2. 用掩码获取ROI区域

def interested_region(img, vertices):if len(img.shape) > 2: mask_color_ignore = (255,) * img.shape[2]else:mask_color_ignore = 255cv2.fillPoly(np.zeros_like(img), vertices, mask_color_ignore)return cv2.bitwise_and(img, np.zeros_like(img))

3、Hough变换空间, 转换像素到直线

def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)lines_drawn(line_img,lines)return line_img

4、在Hough变换后,每帧增加两条线

def lines_drawn(img, lines, color=[255, 0, 0], thickness=6):global cacheglobal first_frameslope_l, slope_r = [],[]lane_l,lane_r = [],[]α =0.2        # 希腊字母阿尔法for line in lines:for x1,y1,x2,y2 in line:slope = (y2-y1)/(x2-x1)if slope > 0.4:slope_r.append(slope)lane_r.append(line)elif slope < -0.4:slope_l.append(slope)lane_l.append(line)img.shape[0] = min(y1,y2,img.shape[0])if((len(lane_l) == 0) or (len(lane_r) == 0)):print ('no lane detected')return 1slope_mean_l = np.mean(slope_l,axis =0)slope_mean_r = np.mean(slope_r,axis =0)mean_l = np.mean(np.array(lane_l),axis=0)mean_r = np.mean(np.array(lane_r),axis=0)if ((slope_mean_r == 0) or (slope_mean_l == 0 )):print('dividing by zero')return 1x1_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l) x2_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l)   x1_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r)x2_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r)if x1_l > x1_r:x1_l = int((x1_l+x1_r)/2)x1_r = x1_ly1_l = int((slope_mean_l * x1_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0]))y1_r = int((slope_mean_r * x1_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0]))y2_l = int((slope_mean_l * x2_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0]))y2_r = int((slope_mean_r * x2_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0]))else:y1_l = img.shape[0]y2_l = img.shape[0]y1_r = img.shape[0]y2_r = img.shape[0]present_frame = np.array([x1_l,y1_l,x2_l,y2_l,x1_r,y1_r,x2_r,y2_r],dtype ="float32")if first_frame == 1:next_frame = present_frame        first_frame = 0        else :prev_frame = cachenext_frame = (1-α)*prev_frame+α*present_framecv2.line(img, (int(next_frame[0]), int(next_frame[1])), (int(next_frame[2]),int(next_frame[3])), color, thickness)cv2.line(img, (int(next_frame[4]), int(next_frame[5])), (int(next_frame[6]),int(next_frame[7])), color, thickness)cache = next_frame

5、处理每帧画面


def weighted_img(img, initial_img, α=0.8, β=1., λ=0.):return cv2.addWeighted(initial_img, α, img, β, λ)def process_image(image):global first_framegray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)img_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)lower_yellow = np.array([20, 100, 100], dtype = "uint8")upper_yellow = np.array([30, 255, 255], dtype="uint8")mask_yellow = cv2.inRange(img_hsv, lower_yellow, upper_yellow)mask_white = cv2.inRange(gray_image, 200, 255)mask_yw = cv2.bitwise_or(mask_white, mask_yellow)mask_yw_image = cv2.bitwise_and(gray_image, mask_yw)# gause blue gauss_gray= cv2.GaussianBlur(mask_yw_image, (5, 5), 0)# detect edgecanny_edges=cv2.Canny(gauss_gray, 50, 150,apertureSize=3)imshape = image.shapelower_left = [imshape[1]/9,imshape[0]]lower_right = [imshape[1]-imshape[1]/9,imshape[0]]top_left = [imshape[1]/2-imshape[1]/8,imshape[0]/2+imshape[0]/10]top_right = [imshape[1]/2+imshape[1]/8,imshape[0]/2+imshape[0]/10]vertices = [np.array([lower_left,top_left,top_right,lower_right],dtype=np.int32)]roi_image = interested_region(canny_edges, vertices)theta = np.pi/180line_image = hough_lines(roi_image, 4, theta, 30, 100, 180)result = weighted_img(line_image, image, α=0.8, β=1., λ=0.)return result

:

6、用moviepy的videofileClip 读出视频,调用process_image方法处理后保存至文件

first_frame = 1
white_output = '__path_to_output_file__'
clip1 = VideoFileClip("__path_to_input_file__")
new_clip = clip1.fl_image(process_image)
new_clip.write_videofile(white_output, audio=False)  

7、用tkinter编写车道线检测项目的GUI图形界面

import tkinter as tk
from tkinter import *
import cv2
from PIL import Image, ImageTk
import os
import numpy as npglobal last_frame1                                   
last_frame1 = np.zeros((480, 640, 3), dtype=np.uint8)
global last_frame2                                      
last_frame2 = np.zeros((480, 640, 3), dtype=np.uint8)
global cap1
global cap2
cap_input = cv2.VideoCapture("path_to_input_test_video")
cap_drawlane = cv2.VideoCapture("path_to_resultant_lane_detected_video")def show_input_video():                                       if not cap_input.isOpened():                             print("无法打开原始视频")flag1, frame1 = cap_input.read()frame1 = cv2.resize(frame1,(400,500))if flag1 is None:print ("原视频读帧错误")elif flag1:global last_frame1last_frame1 = frame1.copy()pic = cv2.cvtColor(last_frame1, cv2.COLOR_BGR2RGB)     img = Image.fromarray(pic)imgtk = ImageTk.PhotoImage(image=img)lmain.imgtk = imgtklmain.configure(image=imgtk)lmain.after(10, show_input_video)def show_drawlane_video():if not cap_drawlane.isOpened():                             print("无法打开车道线视频")flag2, frame2 = cap_drawlane.read()frame2 = cv2.resize(frame2,(400,500))if flag2 is None:print ("车道线视频读帧错误")elif flag2:global last_frame2last_frame2 = frame2.copy()pic2 = cv2.cvtColor(last_frame2, cv2.COLOR_BGR2RGB)img2 = Image.fromarray(pic2)img2tk = ImageTk.PhotoImage(image=img2)lmain2.img2tk = img2tklmain2.configure(image=img2tk)lmain2.after(10, show_drawlane_video)if __name__ == '__main__':root=tk.Tk()                                     lmain = tk.Label(master=root)lmain2 = tk.Label(master=root)lmain.pack(side = LEFT)lmain2.pack(side = RIGHT)root.title("车道线检测")            root.geometry("900x700+100+10") exitbutton = Button(root, text='退出',fg="red",command=   root.destroy).pack(side = BOTTOM,)show_input_video()show_drawlane_video()root.mainloop()                                  cap.release()

这篇关于OpenCV+ moviepy + tkinter 视频车道线智能识别项目源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/672256

相关文章

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

springboot项目打jar制作成镜像并指定配置文件位置方式

《springboot项目打jar制作成镜像并指定配置文件位置方式》:本文主要介绍springboot项目打jar制作成镜像并指定配置文件位置方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录一、上传jar到服务器二、编写dockerfile三、新建对应配置文件所存放的数据卷目录四、将配置文

怎么用idea创建一个SpringBoot项目

《怎么用idea创建一个SpringBoot项目》本文介绍了在IDEA中创建SpringBoot项目的步骤,包括环境准备(JDK1.8+、Maven3.2.5+)、使用SpringInitializr... 目录如何在idea中创建一个SpringBoot项目环境准备1.1打开IDEA,点击New新建一个项

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再