OpenCV图像变换(仿射变换与透视变换)

2024-02-02 17:50

本文主要是介绍OpenCV图像变换(仿射变换与透视变换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV图像变换(仿射变换与透视变换)

仿射变换(affine transform)与透视变换(perspective transform)在图像还原、图像局部变化处理方面有重要意义。通常,在2D平面中,仿射变换的应用较多,而在3D平面中,透视变换又有了自己的一席之地。两种变换原理相似,结果也类似,可针对不同的场合使用适当的变换。

仿射变换和透视变换的数学原理不需深究,其计算方法为坐标向量和变换矩阵的乘积,换言之就是矩阵运算。在应用层面,仿射变换是图像基于3个固定顶点的变换,如图所示:

图中红点即为固定顶点,在变换先后固定顶点的像素值不变,图像整体则根据变换规则进行变换

同理,透视变换是图像基于4个固定顶点的变换,如图所示:

在OpenCV中,仿射变换和透视变换均有封装好的函数,分别为

void warpAffine(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar& borderValue=Scalar())

void warpPerspective(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar& borderValue=Scalar())

两种变换函数形式完全相同,因此以仿射变换函数为例:

void warpAffine(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar& borderValue=Scalar())

参数InputArray src:输入变换前图像

参数OutputArray dst:输出变换后图像,需要初始化一个空矩阵用来保存结果,不用设定矩阵尺寸

参数InputArray M:变换矩阵,用另一个函数getAffineTransform()计算

参数Size dsize:设置输出图像大小

参数int flags=INTER_LINEAR:设置插值方式,默认方式为线性插值

后两个参数不常用,在此不赘述

关于生成变换矩阵InputArray M的函数getAffineTransform():

Mat getAffineTransform(const Point2f* src, const Point2f* dst)

参数const Point2f* src:原图的三个固定顶点

参数const Point2f* dst:目标图像的三个固定顶点

返回值:Mat型变换矩阵,可直接用于warpAffine()函数

注意,顶点数组长度超过3个,则会自动以前3个为变换顶点;数组可用Point2f[]或Point2f*表示

示例代码如下:

	//读取原图Mat I = imread("..//img.jpg");//设置空矩阵用于保存目标图像Mat dst;//设置原图变换顶点Point2f AffinePoints0[3] = { Point2f(100, 50), Point2f(100, 390), Point2f(600, 50) };//设置目标图像变换顶点Point2f AffinePoints1[3] = { Point2f(200, 100), Point2f(200, 330), Point2f(500, 50) };//计算变换矩阵Mat Trans = getAffineTransform(AffinePoints0, AffinePoints1);//矩阵仿射变换warpAffine(I, dst, Trans, Size(I.cols, I.rows));//分别显示变换先后图像进行对比imshow("src", I);imshow("dst", dst);waitKey();

同理,透视变换与仿射变换函数类似:

void warpPerspective(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar& borderValue=Scalar())

生成变换矩阵函数为:

Mat getPerspectiveTransform(const Point2f* src, const Point2f* dst)

注意,透视变换顶点为4个

两种变换完整代码及结果比较:

#include <iostream>
#include <opencv.hpp>
using namespace std;
using namespace cv;Mat AffineTrans(Mat src, Point2f* scrPoints, Point2f* dstPoints)
{Mat dst;Mat Trans = getAffineTransform(scrPoints, dstPoints);warpAffine(src, dst, Trans, Size(src.cols, src.rows), CV_INTER_CUBIC);return dst;
}Mat PerspectiveTrans(Mat src, Point2f* scrPoints, Point2f* dstPoints)
{Mat dst;Mat Trans = getPerspectiveTransform(scrPoints, dstPoints);warpPerspective(src, dst, Trans, Size(src.cols, src.rows), CV_INTER_CUBIC);return dst;
}void main()
{Mat I = imread("..//img.jpg");	//700*438Point2f AffinePoints0[4] = { Point2f(100, 50), Point2f(100, 390), Point2f(600, 50), Point2f(600, 390) };Point2f AffinePoints1[4] = { Point2f(200, 100), Point2f(200, 330), Point2f(500, 50), Point2f(600, 390) };Mat dst_affine = AffineTrans(I, AffinePoints0, AffinePoints1);Mat dst_perspective = PerspectiveTrans(I, AffinePoints0, AffinePoints1);for (int i = 0; i < 4; i++){circle(I, AffinePoints0[i], 2, Scalar(0, 0, 255), 2);circle(dst_affine, AffinePoints1[i], 2, Scalar(0, 0, 255), 2);circle(dst_perspective, AffinePoints1[i], 2, Scalar(0, 0, 255), 2);}imshow("origin", I);imshow("affine", dst_affine);imshow("perspective", dst_perspective);waitKey();
}

结果如图:

可以看出,仿射变换以3个点为基准点,即使数组长度为4也仅取前3个点作为基准点;透视变换以4个点为基准点,两种变换结果不相同。应根据实际情况判断使用哪种变换方式更佳

这篇关于OpenCV图像变换(仿射变换与透视变换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/wxwxx/article/details/76166075
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/671499

相关文章

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量