【知识---ResNet(Residual Network)作用及代码】

2024-02-02 12:52

本文主要是介绍【知识---ResNet(Residual Network)作用及代码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • ResNet(Residual Network)作用
  • ResNet残差块的示例:
    • tensorflow 版本
    • pytorch 版本
  • 总结


前言

提示:这里可以添加本文要记录的大概内容:

BN(批量归一化)可以解决网络层数太深而出现的梯度消失问题,但是如果网络层数太多,这个方法也是不太管用的。所以就提出了resnet,下面对该网络作进一步学习:


提示:以下是本篇文章正文内容,下面案例可供参考

ResNet(Residual Network)作用

ResNet(Residual Network)是由Microsoft Research提出的一种深度神经网络架构,

其主要特点是使用了残差块(Residual Blocks),通过跳跃连接(skip connection)来解决深度神经网络训练过程中的梯度消失和梯度爆炸问题。

这种结构使得网络可以更容易地学习恒等映射,从而更轻松地训练非常深的网络。

ResNet的基本构建块是残差块,其中输入通过跳跃连接直接添加到输出。

这样的设计有助于信息的流动,避免了梯度在网络中传递时过度减小,从而使得训练更加稳定。

ResNet残差块的示例:

tensorflow 版本

import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, ReLU, Adddef residual_block(x, filters, kernel_size=3, stride=1):# 主要路径y = Conv2D(filters, kernel_size=kernel_size, strides=stride, padding='same')(x)y = BatchNormalization()(y)y = ReLU()(y)y = Conv2D(filters, kernel_size=kernel_size, padding='same')(y)y = BatchNormalization()(y)# 跳跃连接if stride != 1 or x.shape[-1] != filters:x = Conv2D(filters, kernel_size=1, strides=stride, padding='same')(x)# 相加操作out = Add()([x, y])out = ReLU()(out)return out# 构建简单的ResNet模型
input_tensor = Input(shape=(224, 224, 3))
x = Conv2D(64, kernel_size=7, strides=2, padding='same')(input_tensor)
x = BatchNormalization()(x)
x = ReLU()(x)
x = residual_block(x, filters=64)
x = residual_block(x, filters=64)
x = residual_block(x, filters=128, stride=2)
x = residual_block(x, filters=128)
x = residual_block(x, filters=256, stride=2)
x = residual_block(x, filters=256)
x = residual_block(x, filters=512, stride=2)
x = residual_block(x, filters=512)
output = tf.keras.layers.GlobalAveragePooling2D()(x)model = tf.keras.Model(inputs=input_tensor, outputs=output)model.summary()

上述代码中的residual_block函数定义了一个简单的残差块,而模型则是通过堆叠这些残差块来构建的。

这只是一个简单的ResNet模型示例,实际中可能会使用更深的网络。

pytorch 版本

import torch
import torch.nn as nn
import torch.nn.functional as Fclass BasicBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1):super(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)# 跳跃连接self.shortcut = nn.Sequential()if stride != 1 or in_channels != out_channels:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels))def forward(self, x):residual = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out += self.shortcut(residual)out = self.relu(out)return outclass ResNet(nn.Module):def __init__(self, block, layers, num_classes=1000):super(ResNet, self).__init__()self.in_channels = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block, 64, layers[0])self.layer2 = self._make_layer(block, 128, layers[1], stride=2)self.layer3 = self._make_layer(block, 256, layers[2], stride=2)self.layer4 = self._make_layer(block, 512, layers[3], stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512, num_classes)def _make_layer(self, block, out_channels, blocks, stride=1):layers = []layers.append(block(self.in_channels, out_channels, stride))self.in_channels = out_channelsfor _ in range(

总结

在实际应用中,可以根据任务的需求和计算资源的限制来选择不同深度的ResNet模型。

这篇关于【知识---ResNet(Residual Network)作用及代码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670767

相关文章

java中反射Reflection的4个作用详解

《java中反射Reflection的4个作用详解》反射Reflection是Java等编程语言中的一个重要特性,它允许程序在运行时进行自我检查和对内部成员(如字段、方法、类等)的操作,本文将详细介绍... 目录作用1、在运行时判断任意一个对象所属的类作用2、在运行时构造任意一个类的对象作用3、在运行时判断

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java 继承和多态的作用及好处

《Java继承和多态的作用及好处》文章讲解Java继承与多态的概念、语法及应用,继承通过extends复用父类成员,减少冗余;多态实现方法重写与向上转型,提升灵活性与代码复用性,动态绑定降低圈复杂度... 目录1. 继承1.1 什么是继承1.2 继承的作用和好处1.3 继承的语法1.4 子类访问父类里面的成

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,