【知识---ResNet(Residual Network)作用及代码】

2024-02-02 12:52

本文主要是介绍【知识---ResNet(Residual Network)作用及代码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • ResNet(Residual Network)作用
  • ResNet残差块的示例:
    • tensorflow 版本
    • pytorch 版本
  • 总结


前言

提示:这里可以添加本文要记录的大概内容:

BN(批量归一化)可以解决网络层数太深而出现的梯度消失问题,但是如果网络层数太多,这个方法也是不太管用的。所以就提出了resnet,下面对该网络作进一步学习:


提示:以下是本篇文章正文内容,下面案例可供参考

ResNet(Residual Network)作用

ResNet(Residual Network)是由Microsoft Research提出的一种深度神经网络架构,

其主要特点是使用了残差块(Residual Blocks),通过跳跃连接(skip connection)来解决深度神经网络训练过程中的梯度消失和梯度爆炸问题。

这种结构使得网络可以更容易地学习恒等映射,从而更轻松地训练非常深的网络。

ResNet的基本构建块是残差块,其中输入通过跳跃连接直接添加到输出。

这样的设计有助于信息的流动,避免了梯度在网络中传递时过度减小,从而使得训练更加稳定。

ResNet残差块的示例:

tensorflow 版本

import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, ReLU, Adddef residual_block(x, filters, kernel_size=3, stride=1):# 主要路径y = Conv2D(filters, kernel_size=kernel_size, strides=stride, padding='same')(x)y = BatchNormalization()(y)y = ReLU()(y)y = Conv2D(filters, kernel_size=kernel_size, padding='same')(y)y = BatchNormalization()(y)# 跳跃连接if stride != 1 or x.shape[-1] != filters:x = Conv2D(filters, kernel_size=1, strides=stride, padding='same')(x)# 相加操作out = Add()([x, y])out = ReLU()(out)return out# 构建简单的ResNet模型
input_tensor = Input(shape=(224, 224, 3))
x = Conv2D(64, kernel_size=7, strides=2, padding='same')(input_tensor)
x = BatchNormalization()(x)
x = ReLU()(x)
x = residual_block(x, filters=64)
x = residual_block(x, filters=64)
x = residual_block(x, filters=128, stride=2)
x = residual_block(x, filters=128)
x = residual_block(x, filters=256, stride=2)
x = residual_block(x, filters=256)
x = residual_block(x, filters=512, stride=2)
x = residual_block(x, filters=512)
output = tf.keras.layers.GlobalAveragePooling2D()(x)model = tf.keras.Model(inputs=input_tensor, outputs=output)model.summary()

上述代码中的residual_block函数定义了一个简单的残差块,而模型则是通过堆叠这些残差块来构建的。

这只是一个简单的ResNet模型示例,实际中可能会使用更深的网络。

pytorch 版本

import torch
import torch.nn as nn
import torch.nn.functional as Fclass BasicBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1):super(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)# 跳跃连接self.shortcut = nn.Sequential()if stride != 1 or in_channels != out_channels:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels))def forward(self, x):residual = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out += self.shortcut(residual)out = self.relu(out)return outclass ResNet(nn.Module):def __init__(self, block, layers, num_classes=1000):super(ResNet, self).__init__()self.in_channels = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block, 64, layers[0])self.layer2 = self._make_layer(block, 128, layers[1], stride=2)self.layer3 = self._make_layer(block, 256, layers[2], stride=2)self.layer4 = self._make_layer(block, 512, layers[3], stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512, num_classes)def _make_layer(self, block, out_channels, blocks, stride=1):layers = []layers.append(block(self.in_channels, out_channels, stride))self.in_channels = out_channelsfor _ in range(

总结

在实际应用中,可以根据任务的需求和计算资源的限制来选择不同深度的ResNet模型。

这篇关于【知识---ResNet(Residual Network)作用及代码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670767

相关文章

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当