【机器学习】基于K-近邻的车牌号识别

2024-02-02 12:12

本文主要是介绍【机器学习】基于K-近邻的车牌号识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验四: 基于K-近邻的车牌号识别

1 案例简介

​ 图像的智能处理一直是人工智能领域广受关注的一类技术,代表性的如人脸识别与 CT 肿瘤识别,在人工智能落地的进程中发挥着重要作用。其中车牌号识别作为一个早期应用场景,已经融入日常生活中,为我们提供了诸多便利,在各地的停车场和出入口都能看到它的身影。车牌号识别往往分为字符划分和字符识别两个子任务,本案例我们将关注字符识别的任务,尝试用 K-NN 的方法对分割好的字符图像进行自动识别和转化。

2 作业说明

2.1 基本要求

  • 完成数据的读入和表示,将图片表示成向量并和 label 对应上;
  • 构建 K-NN 模型(可调库)对测试集中的图片进行预测并计算准确率;
  • 分析当 K 取不同值时测试准确率的变化。

2.2 扩展要求

  • 分析不同距离度量方式对模型效果的影响;
  • 对比平权和加权 K-NN 的效果;
  • 分析训练集大小对测试结果的影响。

3 数据概览

本次我们使用已经分割好的车牌图片作为数据集,包括数字 0-9、字母 A-Z(不包含 O 和 I)以及省份简称共 65 个类,编号从 0 到 64。数据已经分成了训练集和测试集,里面的文件夹用 label 编号命名,一个文件夹下的所有图片都属于该文件夹对应的类,每个图片都是 20 * 20 的二值化灰度图。

下面演示一下如何借助 PIL 库将图片转化为向量:

from PIL import Image
img = Image.open('data/train/0/4-3.jpg')  # 打开图片
img  # 显示图片from PIL import Image
img = Image.open('data/train/0/4-3.jpg')  # 打开图片
img  # 显示图片

请添加图片描述

import numpy as np
pixels = np.array(img)  # 转化为 numpy 矩阵
pixels.shape
(20, 20)

4 模型构建

import os
from PIL import Image
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns
import randomRANDOM_SEED = 2023path_train = 'data/train'
path_test = 'data/test'

4.1数据读取

  1. 读取图片

    读取文件夹中指定数量图片

# 读取 num 张图片,将其转换为一维向量
def readImg(path, num = -1):count =0random.seed(RANDOM_SEED)img_array=[]for img_name in os.listdir(path):img_path = os.path.join(path,img_name)img = Image.open(img_path)img_array.append(np.array(img).reshape(-1))if num > 0 and num < len(img_array):img_array = random.sample(img_array,num)return img_array# 测试该函数
folder_path = path_train+'/0'
num = 5
Imgs = readImg(folder_path,num)
len(Imgs)
5
  1. 读取文件夹与标签
# 读取文件标签,并返回图片、标签列表
def readFile(path,nums = -1):labels =[]Imglist = []for label in os.listdir(path):path_file = os.path.join(path,label)Imgs = readImg(path_file,nums)Imglist = Imglist + Imgsfor i in range(len(Imgs)):labels.append(label)return np.array(Imglist), np.array(labels)# 测试该函数
nums = 5
x,y = readFile(path_train,nums)
x.shape,y.shape
((325, 400), (325,))

4.2 划分数据集

x_train,y_train = readFile(path_train)
x_test,y_test = readFile(path_test)
x_train.shape, y_train.shape, x_test.shape, y_test.shape  # 观察训练与测试数据规模
((15954, 400), (15954,), (4665, 400), (4665,))

4.3 模型的训练

model = KNeighborsClassifier(n_neighbors=3, weights='uniform', algorithm='auto')
model.fit(x_train, y_train)  # 记录训练数据
p_test = model.predict(x_test)  # 预测测试图片
accuracy = accuracy_score(p_test, y_test)  # 计算准确率
print(f'accuracy: {accuracy:.4f}')
accuracy: 0.7031

经过测试,在参数取值为n_neighbors=3, weights='uniform', algorithm='auto'时,预测准确率为0.7031

5 模型优化

  • 分析当 K 取不同值时测试准确率的变化;
  • 分析不同距离度量方式对模型效果的影响;
  • 对比平权和加权 K-NN 的效果;
  • 分析训练集大小对测试结果的影响。

5.1 不同K值对准确率的变化

k_range = range(1,21)
acc_list = []
sns.set()for k in k_range:  # 遍历邻居的个数 kmodel = KNeighborsClassifier(k)model.fit(x_train, y_train)  # 记录训练数据p_test = model.predict(x_test)  # 预测测试图片accuracy = accuracy_score(p_test, y_test)  # 计算准确率acc_list.append(accuracy)print('K: {}, accuracy: {:<.4f}'.format(k, accuracy))plt.plot(k_range, acc_list)  # 画图
plt.xlabel('K')
plt.ylabel('Accuracy')
plt.show()
K: 1, accuracy: 0.7168
K: 2, accuracy: 0.7220
K: 3, accuracy: 0.7031
K: 4, accuracy: 0.7074
K: 5, accuracy: 0.6969
K: 6, accuracy: 0.6965
K: 7, accuracy: 0.6956
K: 8, accuracy: 0.6924
K: 9, accuracy: 0.6913
K: 10, accuracy: 0.6911
K: 11, accuracy: 0.6898
K: 12, accuracy: 0.6857
K: 13, accuracy: 0.6825
K: 14, accuracy: 0.6806
K: 15, accuracy: 0.6776
K: 16, accuracy: 0.6742
K: 17, accuracy: 0.6707
K: 18, accuracy: 0.6686
K: 19, accuracy: 0.6662
K: 20, accuracy: 0.6673

请添加图片描述

由上图可知,在k值取2时准确率最高,随着k值增大,模型准确率程降低趋势

5.2 不同距离度量对模型效果变化

通过改变 metric 参数来测试不同的距离度量。

  • minkowski:闵可夫斯基距离,默认距离度量。
    D ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p D(x,y)=(\sum_{i=1}^n|x_i-y_i|^p)^{\frac{1}{p}} D(x,y)=(i=1nxiyip)p1
  • euclidean:欧几里得距离,两个数值向量点之间的长度
    D ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 D(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2} D(x,y)=i=1n(xiyi)2
  • manhattan:曼哈顿距离,又称城市街区距离,它的计算方式有点类似于只能90度拐角的街道长度。
    D ( x , y ) = ∑ i = 1 k ∣ x i − y i ∣ D(x,y)=\sum_i=1^k|x_i-y_i| D(x,y)=i=1kxiyi
  • chebyshev:chebyshev距离是两个数值向量在单个维度上绝对值差值最大的那个值。
    D ( x , y ) = max i ( ∣ x i − y i ∣ ) D(x,y)=\text{max}_i(|x_i-y_i|) D(x,y)=maxi(xiyi)
metrics = ['minkowski', 'euclidean', 'manhattan', 'chebyshev' ]
acc_list = []for metric in metrics:  # 遍历距离度量类型model = KNeighborsClassifier(metric = metric)model.fit(x_train, y_train)  # 记录训练数据p_test = model.predict(x_test)  # 预测测试图片accuracy = accuracy_score(p_test, y_test)  # 计算准确率acc_list.append(accuracy)print('metric: {}, accuracy: {:<.4f}'.format(metric, accuracy))

结果:

metric: minkowski, accuracy: 0.6969
metric: euclidean, accuracy: 0.6969
metric: manhattan, accuracy: 0.6920
metric: chebyshev, accuracy: 0.4090

绘制柱状图,可视化表示:

plt.bar(metrics, acc_list)  # 画图
plt.show()

请添加图片描述

由上图可见,minkowski, euclidean, manhattan三种举例向量效果类似, chebyshev效果明显较差。

5.3 平均和加权KNN的区别

  • uniform: 平均KNN,这意味着所有的邻居节点在投票过程中具有相同的权重。也就是说,每个邻居节点对最终结果的影响是一样的,不考虑它们与查询点的距离。

  • distance:加权KNN,这意味着邻居节点的权重与它们到查询点的距离成反比。也就是说,距离查询点更近的邻居节点将对最终结果有更大的影响,而距离较远的邻居节点的影响较小。

weights = ['uniform', 'distance']
acc_list = []for weight in weights:model = KNeighborsClassifier(weights = weight)model.fit(x_train, y_train)  # 记录训练数据p_test = model.predict(x_test)  # 预测测试图片accuracy = accuracy_score(p_test, y_test)  # 计算准确率acc_list.append(accuracy)print('metric: {}, accuracy: {:<.4f}'.format(metric, accuracy))

结果:

metric: chebyshev, accuracy: 0.6969
metric: chebyshev, accuracy: 0.7016

绘制柱状图,可视化表示:

plt.bar(weights, acc_list)  # 画图
plt.show()

请添加图片描述

由上图可见,平均与加权结果类似,加权效果较好于平均KNN。

5.4 训练集大小对模型效果的影响

train_range = [1, 5, 10, 20, 50, 100, 200, 400, 600]
acc_lst = list()for train_num in train_range:x_train, y_train = readFile(path_train, train_num)model = KNeighborsClassifier()model.fit(x_train, y_train)p_test = model.predict(x_test)accuracy = accuracy_score(p_test, y_test)acc_lst.append(accuracy)print('train: {}, accuracy: {:<.4f}'.format(train_num, accuracy))

结果:

train: 1, accuracy: 0.1972
train: 5, accuracy: 0.4264
train: 10, accuracy: 0.5035
train: 20, accuracy: 0.5906
train: 50, accuracy: 0.6568
train: 100, accuracy: 0.6707
train: 200, accuracy: 0.7005
train: 400, accuracy: 0.7065
train: 600, accuracy: 0.7025

绘制折线图,可视化表示:

plt.plot(train_range, acc_lst)
plt.xlabel('train')
plt.ylabel('Accuracy')
plt.show()


请添加图片描述

由上图可见,数据集数量越大,准确率越高,但是达到一定大小后增长变缓,甚至会有略微降低。

这篇关于【机器学习】基于K-近邻的车牌号识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670671

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个