速神经网络的训练算法LARS/LAMB工作原理 --UC Berkeley在读博士生尤洋

本文主要是介绍速神经网络的训练算法LARS/LAMB工作原理 --UC Berkeley在读博士生尤洋,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


为什么深度学习很慢?
如果我们利用并行计算,怎样才能完美的利用大量的processor?
为什么large batch size会引起精度降低?
新优化器
参考:
快速神经网络的训练算法 --UC Berkeley博士尤洋
本片文章介绍的两种算法不仅可以优化并行计算,在普通硬件环境中运行也是有效的。算法是由UC Berkeley博士尤洋开发。在固定精度的情况下,新算法可以更快的达到要求,在固定训练时间的情况下,可以有更好的精度。
目前深度学习面临的一个问题是,没有一个通用的优化器。Adaptive optimizers (Adam/AdaGrad)在ImageNet上面表现就不是很好,这导致现在很多ImageNet都在用Momentum进行优化。反过来Momentum在BERT的训练上面也表现平平。

为什么深度学习很慢?
现在大部分的算法都是SGD的变形。SGD随机梯度下降算法:
(Mini-Batch) SGD:
1.Take B data points each iteration (B: batch size)
2.Compute gradients of woeights based on B data points
3.Update the weights: W = W - learning_rate * ▽W

由上图我们可以看到ResNet50的计算量非常大,而BERT的计算量是ResNet的50倍左右。

如果我们利用并行计算,怎样才能完美的利用大量的processor?
有三种思路,第一种并行计算神经网络的层。每台机器负责运算神经网络中的几层。这种思路显然是不对的,因为神经网络需要前向与反向传递,这种传递是顺序的数据依赖,所以在计算的时候只有一台机器在运作其他机器在等待。
第二种思路是并行计算每一层中不同的节点。这种思路可行,但是这就需要一个很宽的神经网络。每一层都都很多神经元。而相比于神经网络的宽度,深度明显要更重要。

根据上图可以看出,宽而浅的神经网络的表现并没有深度网络好。进而我们有了第三种思路:数据并行。

这种思路也是现今的主流,但是这种思路也有一个问题,那就是需要比较大的batch size。在忽略收敛性的前提下增加batch size可以加快并行速度。

上图我们可以看到batch size增加,GPU的速度也增加了。

从上图的表中我们可以看到,t1远大于t2,增加batch size可以减小迭代次数从而加快计算速度。这样加快深度神经网络的训练就可以转化为,如何去增加训练的batch size。

但是问题随之而来,大的batch size会引起精度降低。所以增加训练的batch size又可以转化成如何在增加batch size的情况下保持模型的精度。

为什么large batch size会引起精度降低?
一般来说有两种解释,第一种是泛化问题(Generalization problem),模型具有较高training accuracy,但是test accuracy却很低。这种解释是Intel公司2017年提出的。论文地址:https://openreview.net/pdf?id=H1oyRlYgg

Generalization problem:

Regular batch: |Test loss - Train loss| is small
Large batch: |Test loss - Train loss| is large
泛化问题具体解释可以去论文原文中找到,这里就不在赘述。

想要解决这种问题,可以利用Batch Normalization。利用BN之后test accuracy下降从原来的0.05降低到了0.01左右(batch size = 4096)。
第二种解释是因为优化难度问题,很难去找到正确的超参。这种解释是17年由Facebook公司提出的。论文地址:https://openreview.net/pdf?id=H1oyRlYgg
论文里面提出了两种解决方法,第一种是在增加batch size的同时增加learning rate,两者增加相同的倍数。第二种方法是warmup热身,从小的learning rate一点点增加然后再回复到原始的learning rate。

新优化器
在尤洋博士的研究中,他发现Large batch size在深度神经网络中,每一层的梯度权重比有很大的不同。如下图所示:

这张图我们可以看到第1层和第6层的比值相差很大。这就意味着用相同的learning rate去更新权重的话,会导致第一层更新的效率跟第六层的更新效率相差很大。如果learning rate适应第6层的话,第1层很有可能无法收敛。这就导致了神经网络的准确率下降。
所以这里引入了尤洋博士的新算法Layer-wise Adaptive Rate Scaling(LARS)。新的算法主要改变了learning rate。算法如图:


LARS算法使得每一层的学习率都有所不同,这样就减少因为学习率导致无法收敛的情况。(学习率修正)
在经过LARS优化之后AlexNet的large batch size的test accuracy的效果也变得很好。

增加了batch size训练速度也有大幅度提升。
在文章的第一步我们提到了神经网络中没有一个通用的优化器,那么LARS是否可以用于其他模型的优化。


由上面两张图中我们可以看到LARS在ResNet中表现的很好,在BERT上面虽然在8k左右的时候表现比原来的优化器表现要好,但是当batch size增加到16k以上的时候,表现却出现了下滑。

由此,尤洋博士提出了新优化器Layer-wise Adaptive Moments for Batch(LAMB):

新的算法结合了Adam和刚才提出的layer-wise修正(LARS)。
在应用LAMB优化器后,BERT的训练时间在保持精度的同时降低了60倍。

LAMB优化器在ResNet的训练ImageNet中也击败了Momentum优化器。

并且在小的数据集中表现也非常好。


参考:
https://www.bilibili.com/video/av54050301
https://arxiv.org/pdf/1904.00962v3.pdf
https://openreview.net/pdf?id=H1oyRlYgg
 

这篇关于速神经网络的训练算法LARS/LAMB工作原理 --UC Berkeley在读博士生尤洋的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670538

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个