自动控制原理9.2:线性系统的可控性与可观测性(下)

2024-02-02 07:30

本文主要是介绍自动控制原理9.2:线性系统的可控性与可观测性(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》



2.线性系统的可控性与可观测性
2.6 线性离散时间系统的可控性和可观测性
  1. 线性离散系统的可控性和可达性

    设线性时变离散时间系统的状态方程为:
    x ( k + 1 ) = G ( k ) x ( k ) + H ( k ) u ( k ) , k ∈ T k x(k+1)=G(k)x(k)+H(k)u(k),k\in{T_k} x(k+1)=G(k)x(k)+H(k)u(k),kTk
    其中: T k T_k Tk为离散时间定义区间;

    如果对初始时刻 l ∈ T k l\in{T_k} lTk和状态空间中的所有非零状态 x ( l ) x(l) x(l),都存在时刻 m ∈ T k , m > l m\in{T_k},m>l mTk,m>l和对应的控制 u ( k ) u(k) u(k),使得 x ( m ) = 0 x(m)=0 x(m)=0,则称系统在时刻 l l l为完全可控;如果对初始时刻 l ∈ T k l\in{T_k} lTk和初始状态 x ( l ) = 0 x(l)=0 x(l)=0,存在时刻 m ∈ T k , m > l m\in{T_k},m>l mTk,m>l和相应的控制 u ( k ) u(k) u(k),使得 x ( m ) x(m) x(m)可为状态空间中的任意非零点,则称系统在时刻 l l l为完全可达;

    对于离散时间系统,不管是时变还是定常的,可控性和可达性只有在一定条件下才是等价的,其等价条件分别如下:

    • 线性离散时间系统的可控性和可达性为等价的充分必要条件:系统矩阵 G ( k ) G(k) G(k)对所有 k ∈ [ l , m − 1 ] k\in[l,m-1] k[l,m1]为非奇异;

    • 线性定常离散时间系统:
      x ( k + 1 ) = G x ( k ) + H u ( k ) ; k = 0 , 1 , 2 , ⋯ , x(k+1)=Gx(k)+Hu(k);k=0,1,2,\cdots, x(k+1)=Gx(k)+Hu(k)k=0,1,2,,
      可控性和可达性等价的充分必要条件:系统矩阵 G G G为非奇异;

    • 如果线性离散时间系统是相应连续时间系统的时间离散化模型,则其可控性和可达性是等价的;

    线性定常离散系统的可控性判据:设单输入线性定常离散系统的状态方程为:
    x ( k + 1 ) = G x ( k ) + h u ( k ) x(k+1)=Gx(k)+hu(k) x(k+1)=Gx(k)+hu(k)
    式中: x x x n n n维状态向量, u u u为标量输入, G G G n × n n\times{n} n×n非奇异矩阵;

    线性定常离散系统状态方程的解为:
    x ( k ) = G k x ( 0 ) + ∑ i = 0 k − 1 G k − 1 − i h u ( i ) x(k)=G^kx(0)+\sum_{i=0}^{k-1}G^{k-1-i}hu(i) x(k)=Gkx(0)+i=0k1Gk1ihu(i)
    可控性矩阵为:
    S 1 ′ = [ G − 1 h G − 2 h ⋯ G − n h ] S'_1=\begin{bmatrix} G^{-1}h & G^{-2}h & \cdots & G^{-n}h \end{bmatrix} S1=[G1hG2hGnh]
    亦或:
    r a n k S 1 = r a n k [ h G h ⋯ G n − 1 h ] = n {\rm rank}S_1={\rm rank} \begin{bmatrix} h & Gh & \cdots & G^{n-1}h \end{bmatrix}=n rankS1=rank[hGhGn1h]=n
    r a n k S 1 < n {\rm rank}S_1<n rankS1<n时,系统不可控,表示不存在使任意 x ( 0 ) x(0) x(0)转移至 x ( n ) = 0 x(n)=0 x(n)=0的控制。

    多输入系统:设系统的状态方程为:
    x ( k + 1 ) = G x ( k ) + H u ( k ) x(k+1)=Gx(k)+Hu(k) x(k+1)=Gx(k)+Hu(k)
    可控性问题:能否求出无约束控制向量序列 u ( 0 ) , u ( 1 ) , u ( 2 ) , ⋯ , u ( n − 1 ) u(0),u(1),u(2),\cdots,u(n-1) u(0),u(1),u(2),,u(n1),使系统能从任意初态 x ( 0 ) x(0) x(0)转移至 x ( n ) = 0 x(n)=0 x(n)=0

    多输入系统状态方程的解:
    x ( k ) = G k x ( 0 ) + ∑ i = 0 k − 1 G k − 1 − i H u ( i ) x(k)=G^kx(0)+\sum_{i=0}^{k-1}G^{k-1-i}Hu(i) x(k)=Gkx(0)+i=0k1Gk1iHu(i)
    多输入线性离散系统状态可控的充分必要条件:
    r a n k S 2 ′ = r a n k [ G − 1 H G − 2 H ⋯ G − n H ] = n {\rm rank}S'_2={\rm rank} \begin{bmatrix} G^{-1}H & G^{-2}H & \cdots & G^{-n}H \end{bmatrix}=n rankS2=rank[G1HG2HGnH]=n
    亦或:
    r a n k S 2 = r a n k [ H G H ⋯ G n − 1 H ] = n {\rm rank}S_2={\rm rank} \begin{bmatrix} H & GH & \cdots & G^{n-1}H \end{bmatrix}=n rankS2=rank[HGHGn1H]=n
    实例分析:

    E x a m p l e 6 : {\rm Example6:} Example6 设单输入线性定常离散系统状态方程为:
    x ( k + 1 ) = [ 1 0 0 0 2 − 2 − 1 1 0 ] x ( k ) + [ 1 0 1 ] u ( k ) x(k+1)= \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & -2\\ -1 & 1 & 0 \end{bmatrix}x(k)+ \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}u(k) x(k+1)= 101021020 x(k)+ 101 u(k)
    判断其可控性;如初始状态 x ( 0 ) = [ 2 1 0 ] T x(0)=\begin{bmatrix}2 & 1 & 0\end{bmatrix}^T x(0)=[210]T,确定使 x ( 3 ) = 0 x(3)=0 x(3)=0的控制序列 u ( 0 ) , u ( 1 ) , u ( 2 ) u(0),u(1),u(2) u(0),u(1),u(2)

    研究使 x ( 2 ) = 0 x(2)=0 x(2)=0的可能性;

    解:

    依题意可知:
    G = [ 1 0 0 0 2 − 2 − 1 1 0 ] , h = [ 1 0 1 ] G=\begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & -2\\ -1 & 1 & 0 \end{bmatrix},h= \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} G= 101021020 ,h= 101

    r a n k S 1 = r a n k [ h G h G 2 h ] = r a n k [ 1 1 1 0 − 2 − 2 1 − 1 − 3 ] = 3 = n {\rm rank}S_1={\rm rank}\begin{bmatrix}h & Gh & G^2h\end{bmatrix}={\rm rank} \begin{bmatrix} 1 & 1 & 1\\ 0 & -2 & -2\\ 1 & -1 & -3 \end{bmatrix}=3=n rankS1=rank[hGhG2h]=rank 101121123 =3=n

    故系统可控。

    k = 0 , 1 , 2 k=0,1,2 k=0,1,2,可达状态序列:
    x ( 1 ) = G x ( 0 ) + h u ( 0 ) = [ 1 0 0 0 2 − 2 − 1 1 0 ] [ 2 1 0 ] + [ 1 0 1 ] u ( 0 ) = [ 2 2 − 1 ] + [ 1 0 1 ] u ( 0 ) x ( 2 ) = G x ( 1 ) + h u ( 1 ) = [ 2 6 0 ] + [ 1 − 2 − 1 ] u ( 0 ) + [ 1 0 1 ] u ( 1 ) x ( 3 ) = G x ( 2 ) + h u ( 2 ) = [ 2 12 4 ] + [ 1 − 2 − 3 ] u ( 0 ) + [ 1 − 2 − 1 ] u ( 1 ) + [ 1 0 1 ] \begin{aligned} &x(1)=Gx(0)+hu(0)= \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & -2\\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}+ \begin{bmatrix} 1\\0\\1 \end{bmatrix}u(0)=\begin{bmatrix}2\\2\\-1\end{bmatrix}+\begin{bmatrix}1\\0\\1\end{bmatrix}u(0)\\\\ &x(2)=Gx(1)+hu(1)=\begin{bmatrix}2\\6\\0\end{bmatrix}+\begin{bmatrix}1\\-2\\-1\end{bmatrix}u(0)+\begin{bmatrix}1\\0\\1\end{bmatrix}u(1)\\\\ &x(3)=Gx(2)+hu(2)=\begin{bmatrix}2\\12\\4\end{bmatrix}+\begin{bmatrix}1\\-2\\-3\end{bmatrix}u(0)+\begin{bmatrix}1\\-2\\-1\end{bmatrix}u(1)+\begin{bmatrix}1\\0\\1\end{bmatrix} \end{aligned} x(1)=Gx(0)+hu(0)= 101021020 210 + 101 u(0)= 221 + 101 u(0)x(2)=Gx(1)+hu(1)= 260 + 121 u(0)+ 101 u(1)x(3)=Gx(2)+hu(2)= 2124 + 123 u(0)+ 121 u(1)+ 101
    x ( 3 ) = 0 x(3)=0 x(3)=0,则有:
    [ 1 1 1 − 2 − 2 0 − 3 − 1 1 ] [ u ( 0 ) u ( 1 ) u ( 2 ) ] = [ − 2 − 12 − 4 ] \begin{bmatrix} 1 & 1 & 1\\ -2 & -2 & 0\\ -3 & -1 & 1 \end{bmatrix} \begin{bmatrix} u(0)\\ u(1)\\ u(2) \end{bmatrix}= \begin{bmatrix} -2\\ -12\\ -4 \end{bmatrix} 123121101 u(0)u(1)u(2) = 2124
    其系数矩阵即可控性矩阵 S 1 S_1 S1是非奇异的,因而可得:
    [ u ( 0 ) u ( 1 ) u ( 2 ) ] = [ 1 1 1 − 2 − 2 0 − 3 − 1 1 ] − 1 [ − 2 − 12 − 4 ] = [ 1 2 1 2 1 2 − 1 2 − 1 1 2 1 1 2 0 ] [ − 2 − 12 − 4 ] = [ − 5 11 − 8 ] \begin{bmatrix} u(0)\\ u(1)\\ u(2) \end{bmatrix}= \begin{bmatrix} 1 & 1 & 1\\ -2 & -2 & 0\\ -3 & -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -2\\ -12\\ -4 \end{bmatrix}= \begin{bmatrix} \displaystyle\frac{1}{2} & \displaystyle\frac{1}{2} & \displaystyle\frac{1}{2}\\ -\displaystyle\frac{1}{2} & -1 & \displaystyle\frac{1}{2} \\ 1 & \displaystyle\frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} -2\\ -12\\ -4 \end{bmatrix}= \begin{bmatrix} -5\\11\\-8 \end{bmatrix} u(0)u(1)u(2) = 123121101 1 2124 = 212112112121210 2124 = 5118
    若令 x ( 2 ) = 0 x(2)=0 x(2)=0,即解方程组:
    [ 1 1 − 2 0 − 1 1 ] [ u ( 0 ) u ( 1 ) ] = [ − 2 − 6 0 ] \begin{bmatrix} 1 & 1\\ -2 & 0\\ -1 & 1 \end{bmatrix}\begin{bmatrix} u(0)\\u(1) \end{bmatrix}= \begin{bmatrix} -2\\-6\\0 \end{bmatrix} 121101 [u(0)u(1)]= 260
    其系数矩阵的秩为 2 2 2,增广矩阵:
    [ 1 1 ∣ − 2 − 2 0 ∣ − 6 − 1 1 ∣ 0 ] \begin{bmatrix} 1 & 1 &| & -2\\ -2 & 0 & | & -6\\ -1 & 1 & | & 0 \end{bmatrix} 121101260
    秩为 3 3 3,两个秩不等,方程无解,意味着不能在两个采样周期内使系统由初始状态转移至原点;若该两个秩相等,则可用两步完成状态转移。

  2. 线性离散系统的可观测性

    设离散系统为:
    x ( k + 1 ) = G ( k ) x ( k ) + H ( k ) u ( k ) , k ∈ T k y ( k ) = C ( k ) x ( k ) + D ( k ) u ( k ) \begin{aligned} &x(k+1)=G(k)x(k)+H(k)u(k),k\in{T_k}\\\\ &y(k)=C(k)x(k)+D(k)u(k) \end{aligned} x(k+1)=G(k)x(k)+H(k)u(k),kTky(k)=C(k)x(k)+D(k)u(k)
    若对初始时刻 l ∈ T k l\in{T_k} lTk的任一非零初始状态 x ( l ) = x 0 x(l)=x_0 x(l)=x0,都存在有限时刻 m ∈ T k , m > l m\in{T_k},m>l mTk,m>l,且可由 [ l , m ] [l,m] [l,m]上的输出 y ( k ) y(k) y(k)唯一地确定 x 0 x_0 x0,则称系统在时刻 l l l是完全可观测的。

    线性定常离散系统的可观测判据:设线性定常离散系统的动态方程为:
    x ( k + 1 ) = G x ( k ) + H u ( k ) , y ( k ) = C x ( k ) + D u ( k ) x(k+1)=Gx(k)+Hu(k),y(k)=Cx(k)+Du(k) x(k+1)=Gx(k)+Hu(k),y(k)=Cx(k)+Du(k)
    式中: x ( k ) x(k) x(k) n n n维状态向量, y ( k ) y(k) y(k) q q q维输出向量;

    线性定常离散系统的可观测矩阵( n q × n nq\times{n} nq×n):
    V 1 T = [ C C G ⋮ C G n − 1 ] V^T_1= \begin{bmatrix} C\\ CG\\ \vdots\\ CG^{n-1} \end{bmatrix} V1T= CCGCGn1
    系统可观测的充分必要条件:
    r a n k V 1 T = n {\rm rank}V^T_1=n rankV1T=n
    线性定常离散系统的可观测性判据常表示为:
    r a n k V 1 = r a n k [ C T G T C T ⋯ ( G T ) n − 1 C T ] = n {\rm rank}V_1={\rm rank}\begin{bmatrix}C^T & G^TC^T & \cdots & (G^T)^{n-1}C^T\end{bmatrix}=n rankV1=rank[CTGTCT(GT)n1CT]=n
    实例分析:

    E x a m p l e 7 : {\rm Example7:} Example7 已知线性定常离散系统的动态方程为:
    x ( k + 1 ) = G x ( k ) + h u ( k ) , y ( k ) = C i x ( k ) , i = 1 , 2 x(k+1)=Gx(k)+hu(k),y(k)=C_ix(k),i=1,2 x(k+1)=Gx(k)+hu(k),y(k)=Cix(k),i=1,2

    其中:
    G = [ 1 0 − 1 0 − 2 1 3 0 2 ] , h = [ 2 − 1 1 ] , c 1 = [ 0 1 0 ] , C 2 = [ 0 0 1 1 0 0 ] G= \begin{bmatrix} 1 & 0 & -1\\ 0 & -2 & 1\\ 3 & 0 & 2 \end{bmatrix},h= \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix},c_1= \begin{bmatrix} 0 & 1 & 0 \end{bmatrix},C_2= \begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0 \end{bmatrix} G= 103020112 ,h= 211 ,c1=[010],C2=[010010]
    判断系统的可观测性,讨论可观测性的物理解释。

    解:

    当观测矩阵为 c 1 c_1 c1时,
    c 1 T = [ 0 1 0 ] , G T c 1 T = [ 0 − 2 1 ] , ( G T ) 2 c 1 T = [ 3 4 0 ] c_1^T= \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}, G^Tc_1^T= \begin{bmatrix} 0\\ -2\\ 1 \end{bmatrix},(G^T)^2c_1^T= \begin{bmatrix} 3\\ 4\\ 0 \end{bmatrix} c1T= 010 ,GTc1T= 021 ,(GT)2c1T= 340

    r a n k V 1 = r a n k [ 0 0 3 1 − 2 4 0 1 0 ] = 3 = n {\rm rank}V_1={\rm rank} \begin{bmatrix} 0 & 0 & 3\\ 1 & -2 & 4\\ 0 & 1 & 0 \end{bmatrix}=3=n rankV1=rank 010021340 =3=n

    故系统可观测。

    由输出方程 y ( k ) = c 1 x ( k ) = x 2 ( k ) y(k)=c_1x(k)=x_2(k) y(k)=c1x(k)=x2(k)可见,在第 k k k步便可由输出确定状态变量 x 2 ( k ) x_2(k) x2(k)

    由于
    y ( k + 1 ) = x 2 ( k + 1 ) = − 2 x 2 ( k ) + x 3 ( k ) y(k+1)=x_2(k+1)=-2x_2(k)+x_3(k) y(k+1)=x2(k+1)=2x2(k)+x3(k)
    故在第 k + 1 k+1 k+1步便可确定 x 3 ( k ) x_3(k) x3(k),由于:
    y ( k + 2 ) = x 2 ( k + 2 ) = − 2 x 2 ( k + 1 ) + x 3 ( k + 1 ) = − 2 [ − 2 x 2 ( k ) + x 3 ( k ) ] + 3 x 1 ( k ) + 2 x 3 ( k ) = 4 x 2 ( k ) + 3 x 1 ( k ) \begin{aligned} y(k+2)&=x_2(k+2)=-2x_2(k+1)+x_3(k+1)\\\\ &=-2[-2x_2(k)+x_3(k)]+3x_1(k)+2x_3(k)\\\\ &=4x_2(k)+3x_1(k) \end{aligned} y(k+2)=x2(k+2)=2x2(k+1)+x3(k+1)=2[2x2(k)+x3(k)]+3x1(k)+2x3(k)=4x2(k)+3x1(k)
    故在第 k + 2 k+2 k+2步便可确定 x 1 ( k ) x_1(k) x1(k)

    该系统为三阶系统,可观测意味着至多三步便可由输出 y ( k ) , y ( k + 1 ) , y ( k + 2 ) y(k),y(k+1),y(k+2) y(k),y(k+1),y(k+2)的测量值来确定三个状态变量;

    当观测矩阵为 C 2 C_2 C2时,
    C 2 T = [ 0 1 0 0 1 0 ] , G T C 2 T = [ 3 1 0 0 2 − 1 ] , ( G T ) 2 C 2 T = [ 9 − 2 0 0 1 − 3 ] C_2^T= \begin{bmatrix} 0 & 1\\ 0 & 0\\ 1 & 0 \end{bmatrix},G^TC_2^T= \begin{bmatrix} 3 & 1\\ 0 & 0\\ 2 & -1 \end{bmatrix}, (G^T)^2C_2^T= \begin{bmatrix} 9 & -2 \\ 0 & 0 \\ 1 & -3 \end{bmatrix} C2T= 001100 GTC2T= 302101 (GT)2C2T= 901203

    r a n k V 1 = r a n k [ 0 1 3 1 9 − 2 0 0 0 0 0 0 1 0 2 − 1 1 − 3 ] = 2 ≠ n = 3 {\rm rank}V_1={\rm rank} \begin{bmatrix} 0 & 1 & 3 & 1 & 9 & -2\\ 0 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 2 & -1 & 1 & -3 \end{bmatrix}=2≠n=3 rankV1=rank 001100302101901203 =2=n=3

    故系统不可观测。

    根据动态方程可导出:
    y ( k ) = [ x 3 ( k ) x 1 ( k ) ] y ( k + 1 ) = [ x 3 ( k + 1 ) x 1 ( k + 1 ) ] = [ 3 x 1 ( k ) + 2 x 3 ( k ) x 1 ( k ) − x 3 ( k ) ] y ( k + 2 ) = [ x 3 ( k + 2 ) x 1 ( k + 2 ) ] = [ 3 x 1 ( k + 1 ) + 2 x 3 x ( k + 1 ) x 1 ( k + 1 ) − x 3 ( k + 1 ) ] = [ 9 x 1 ( k ) + x 3 ( k ) − 2 x 1 ( k ) − 3 x 3 ( k ) ] \begin{aligned} &y(k)= \begin{bmatrix} x_3(k)\\ x_1(k) \end{bmatrix}\\\\ &y(k+1)= \begin{bmatrix} x_3(k+1)\\ x_1(k+1) \end{bmatrix}= \begin{bmatrix} 3x_1(k)+2x_3(k)\\ x_1(k)-x_3(k) \end{bmatrix}\\\\ &y(k+2)= \begin{bmatrix} x_3(k+2)\\ x_1(k+2) \end{bmatrix}= \begin{bmatrix} 3x_1(k+1)+2x_3x(k+1)\\ x_1(k+1)-x_3(k+1) \end{bmatrix}= \begin{bmatrix} 9x_1(k)+x_3(k)\\ -2x_1(k)-3x_3(k) \end{bmatrix} \end{aligned} y(k)=[x3(k)x1(k)]y(k+1)=[x3(k+1)x1(k+1)]=[3x1(k)+2x3(k)x1(k)x3(k)]y(k+2)=[x3(k+2)x1(k+2)]=[3x1(k+1)+2x3x(k+1)x1(k+1)x3(k+1)]=[9x1(k)+x3(k)2x1(k)3x3(k)]
    三步的输出测量值中始终不含 x 2 ( k ) x_2(k) x2(k),故 x 2 ( k ) x_2(k) x2(k)是不可观测状态变量,只要有一个状态变量不可观测,则称系统不完全可观测,简称不可观测.

  3. 连续动态方程离散化后的可控性和可观测性

    一个可控的或可观测的连续系统,当其离散化后并不一定能保持其可控性或可观测性,连续系统可控或可观测时,若采样周期选择不当,对应的离散化系统便有可能不可控或不可观测,也有可能既不可控又不可观测;若连续系统不可控或不可观测,不管采样周期如何选择,离散化后的系统一定是不可控或不可观测的;

2.7 线性定常系统的线性变换
2.7.1 状态空间表达式的线性变换

设系统动态方程为:
x ˙ = A x + b u , y = c x \dot{x}=Ax+bu,y=cx x˙=Ax+bu,y=cx
x = P x ‾ {x}=P\overline{x} x=Px,其中 P P P为非奇异线性变换矩阵,将 x x x变换为 x ‾ \overline{x} x,变换后动态方程为:
x ‾ ˙ = A ‾ x ‾ + b ‾ u , y ‾ = c ‾ x ‾ = y \dot{\overline{x}}=\overline{A}\overline{x}+\overline{b}u,\overline{y}=\overline{c}\overline{x}=y x˙=Ax+bu,y=cx=y
其中:
A ‾ = P − 1 A P , b ‾ = P − 1 b , c ‾ = c P \overline{A}=P^{-1}AP,\overline{b}=P^{-1}b,\overline{c}=cP A=P1AP,b=P1b,c=cP
称为对系统进行 P P P变换,对系统进行线性变换的目的在于使 A ‾ \overline{A} A阵规范化;

【化 A A A阵为对角型】

  1. A A A阵为任意形式的方阵,且有 n n n个互异实数特征值 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn,则可由非奇异线性变换化为对角阵 Λ \Lambda Λ

Λ = P − 1 A P = [ λ 1 λ 2 ⋱ λ n ] \Lambda=P^{-1}AP= \begin{bmatrix} \lambda_1 & & &\\ &\lambda_2\\ &&\ddots\\ &&&\lambda_n \end{bmatrix} Λ=P1AP= λ1λ2λn

P P P阵由 A A A的实数特征向量 p i ( i = 1 , 2 , ⋯ , n ) p_i(i=1,2,\cdots,n) pi(i=1,2,,n)组成:
P = [ p 1 p 2 ⋯ p n ] P=\begin{bmatrix}p_1 & p_2 & \cdots & p_n\end{bmatrix} P=[p1p2pn]
特征向量满足:
A p i = λ i p i , i = 1 , 2 , ⋯ , n Ap_i=\lambda_ip_i,i=1,2,\cdots,n Api=λipi,i=1,2,,n

  1. A A A阵为友矩阵,且有 n n n个互异实数特征值 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn,则下列的范德蒙特 ( V a n d e r m o d e ) {\rm (Vandermode)} (Vandermode)矩阵 P P P可使 A A A对角化:

A = [ 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 − a 0 − a 1 − a 2 ⋯ − a n − 1 ] , P = [ 1 1 ⋯ 1 λ 1 λ 2 ⋯ λ n λ 1 2 λ 2 2 ⋯ λ n 2 ⋮ ⋮ ⋮ λ 1 n − 1 λ 2 n − 1 ⋯ λ n n − 1 ] A= \begin{bmatrix} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & & \vdots\\ 0 & 0 & 0 & \cdots & 1\\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix},P= \begin{bmatrix} 1 & 1 & \cdots & 1\\ \lambda_1 & \lambda_2 & \cdots & \lambda_n\\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2\\ \vdots & \vdots & &\vdots\\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{bmatrix} A= 000a0100a1010a2001an1 ,P= 1λ1λ12λ1n11λ2λ22λ2n11λnλn2λnn1

【化 A A A阵为约当型】

A A A阵具有 m m m重实特征值 λ 1 \lambda_1 λ1,其余为 n − m n-m nm个互异实特征值,在求解 A p i = λ 1 p i Ap_i=\lambda_1p_i Api=λ1pi时,只有一个独立实特征向量 p 1 p_1 p1,则只能使 A A A化为约当阵 J J J.
J = P − 1 A P = [ λ 1 1 λ 1 ⋱ ⋱ 1 λ 1 λ m + 1 ⋱ λ n ] J=P^{-1}AP= \begin{bmatrix} \lambda_1 & 1 & \\ &\lambda_1 &\ddots\\ &&\ddots & 1\\ &&&\lambda_1\\ &&&&\lambda_{m+1}\\ &&&&&\ddots\\ &&&&&&\lambda_n \end{bmatrix} J=P1AP= λ11λ11λ1λm+1λn

P = [ p 1 p 2 ⋯ p m ∣ p m + 1 ⋯ p n ] P= \begin{bmatrix} p_1 & p_2 & \cdots & p_m & | & p_{m+1} & \cdots & p_n \end{bmatrix} P=[p1p2pmpm+1pn]

式中, p 2 , p 3 , ⋯ , p m p_2,p_3,\cdots,p_m p2,p3,,pm是广义实特征向量,满足:
[ p 1 p 2 ⋯ p m ] [ λ 1 1 λ 1 ⋱ ⋱ 1 λ 1 ] = A [ p 1 p 2 ⋯ p m ] \begin{bmatrix} p_1 & p_2 & \cdots & p_m \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 &\\ &\lambda_1 & \ddots\\ &&\ddots & 1\\ &&&\lambda_1 \end{bmatrix}=A\begin{bmatrix}p_1 & p_2 & \cdots & p_m\end{bmatrix} [p1p2pm] λ11λ11λ1 =A[p1p2pm]
p m + 1 , ⋯ , p n p_{m+1},\cdots,p_n pm+1,,pn是互异特征值对应的实特征向量;

【化可控系统为可控标准型】

单输入线性定常系统状态方程的可控标准型:
[ x ˙ 1 x ˙ 2 ⋮ x ˙ n − 1 x ˙ n ] = [ 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 − a 0 − a 1 − a 2 ⋯ − a n − 1 ] [ x 1 x 2 ⋮ x n − 1 x n ] + [ 0 0 ⋮ 0 1 ] u \begin{bmatrix} \dot{x}_1\\ \dot{x}_2\\ \vdots\\ \dot{x}_{n-1}\\ \dot{x}_n \end{bmatrix}= \begin{bmatrix} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & &\vdots \\ 0 & 0 & 0 & \cdots & 1\\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_{n-1}\\ x_{n} \end{bmatrix}+ \begin{bmatrix} 0\\ 0\\ \vdots\\ 0\\ 1 \end{bmatrix}u x˙1x˙2x˙n1x˙n = 000a0100a1010a2001an1 x1x2xn1xn + 0001 u
一个可控系统,当 A , b A,b A,b不具有可控标准型时,一定可以选择适当的变换化为可控标准型;

设状态方程为:
x ˙ = A x + b u \dot{x}=Ax+bu x˙=Ax+bu
进行 P − 1 P^{-1} P1变换,即令:
x = P − 1 z x=P^{-1}z x=P1z
变换为:
z ˙ = P A P − 1 z + P b u \dot{z}=PAP^{-1}z+Pbu z˙=PAP1z+Pbu
要求:
P A P − 1 = [ 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 − a 0 − a 1 − a 2 ⋯ − a n − 1 ] , P b = [ 0 0 ⋮ 0 1 ] PAP^{-1}=\begin{bmatrix} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots &&\vdots \\ 0 & 0 & 0 & \cdots & 1\\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix},Pb= \begin{bmatrix} 0\\ 0\\ \vdots \\ 0\\ 1 \end{bmatrix} PAP1= 000a0100a1010a2001an1 ,Pb= 0001
变换矩阵 P − 1 P^{-1} P1的求法:

  1. 计算可控性矩阵 S = [ b A b ⋯ A n − 1 b ] S=\begin{bmatrix}b & Ab & \cdots & A^{n-1}b\end{bmatrix} S=[bAbAn1b]

  2. 计算可控性矩阵的逆阵 S − 1 S^{-1} S1,设一般形式为:

S − 1 = [ S 11 S 12 ⋯ S 1 n S 21 S 22 ⋯ S 2 n ⋮ ⋮ ⋮ S n 1 S n 2 ⋯ S n n ] S^{-1}=\begin{bmatrix} S_{11} & S_{12} & \cdots & S_{1n}\\ S_{21} & S_{22} & \cdots & S_{2n}\\ \vdots & \vdots && \vdots\\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{bmatrix} S1= S11S21Sn1S12S22Sn2S1nS2nSnn

  1. 取出 S − 1 S^{-1} S1的最后一行(即第 n n n行)构成 p 1 p_1 p1行向量,

p 1 = [ S n 1 S n 2 ⋯ S n n ] p_1=\begin{bmatrix}S_{n1} & S_{n2} & \cdots & S_{nn}\end{bmatrix} p1=[Sn1Sn2Snn]

  1. 构造 P P P

P = [ p 1 p 1 A ⋮ p 1 A n − 1 ] P= \begin{bmatrix} p_1\\ p_1A\\ \vdots \\ p_1A^{n-1} \end{bmatrix} P= p1p1Ap1An1

  1. P − 1 P^{-1} P1是将非标准可控系统化为可控标准型的变换矩阵。
2.7.2 对偶原理

设系统为 Σ 1 ( A , B , C ) \Sigma_1(A,B,C) Σ1(A,B,C),则系统 Σ 2 ( A T , C T , B T ) \Sigma_2(A^T,C^T,B^T) Σ2(AT,CT,BT)为系统 Σ 1 \Sigma_1 Σ1的对偶系统;

其动态方程分别为:
Σ 1 : x ˙ = A x + B u , y = C x Σ 2 : z ˙ = A T z + C T v , w = B T z \begin{aligned} &\Sigma_1:\dot{x}=Ax+Bu,y=Cx\\\\ &\Sigma_2:\dot{z}=A^Tz+C^Tv,w=B^Tz \end{aligned} Σ1x˙=Ax+Bu,y=CxΣ2z˙=ATz+CTv,w=BTz
式中: x 、 z x、z xz均为 n n n维状态向量, u 、 w u、w uw均为 p p p维向量, y 、 v y、v yv均为 q q q维向量;

系统 Σ 1 \Sigma_1 Σ1的可控性判别矩阵 [ B A B ⋯ A n − 1 B ] \begin{bmatrix}B & AB & \cdots & A^{n-1}B\end{bmatrix} [BABAn1B]与对偶系统 Σ 2 \Sigma_2 Σ2的可观测性矩阵 [ ( B T ) T ( A T ) T ( B T ) T ⋯ ( ( A T ) T ) n − 1 ( B T ) T ] \begin{bmatrix}(B^T)^T & (A^T)^T(B^T)^T & \cdots & ((A^T)^T)^{n-1}(B^T)^T\end{bmatrix} [(BT)T(AT)T(BT)T((AT)T)n1(BT)T]完全相同;系统 Σ 1 \Sigma_1 Σ1的可观测性矩阵 [ C T A T C T ⋯ ( A T ) n − 1 C T ] \begin{bmatrix}C^T & A^TC^T & \cdots & (A^T)^{n-1}C^T\end{bmatrix} [CTATCT(AT)n1CT]与对偶系统 Σ 2 \Sigma_2 Σ2的可控性判别矩阵 [ C T A T C T ⋯ ( A T ) n − 1 C T ] \begin{bmatrix}C^T & A^TC^T & \cdots &(A^T)^{n-1}C^T\end{bmatrix} [CTATCT(AT)n1CT]完全相同;

应用对偶原理,能把可观测的单输入-单输出系统化为可观测标准型的问题转化为将其对偶系统化为可控标准型的问题;

设单输入-单输出系统动态方程为:
x ˙ = A x + b u , y = c x \dot{x}=Ax+bu,y=cx x˙=Ax+bu,y=cx
系统可观测,但 A 、 c A、c Ac不是可观测标准型;其对偶系统动态方程为:
z ˙ = A T z + c T v , w = b T z \dot{z}=A^Tz+c^Tv,w=b^Tz z˙=ATz+cTv,w=bTz
对偶系统一定可控,但不是可控标准型;

利用已知的化为可控标准型的原理和步骤:

先将对偶系统化为可控标准型,再一次使用对偶原理,即可获得原系统的可观测标准型;

计算步骤:

  1. 列出对偶系统的可控性矩阵(即原系统的可观测性矩阵 V 1 V_1 V1)

S ‾ 2 = V 1 = [ c T A T c T ⋯ ( A T ) n − 1 c T ] \overline{S}_2=V_1=\begin{bmatrix}c^T & A^Tc^T & \cdots & (A^T)^{n-1}c^T\end{bmatrix} S2=V1=[cTATcT(AT)n1cT]

  1. V 1 V_1 V1的逆阵 V 1 − 1 V_1^{-1} V11,且记为行向量组:

V 1 − 1 = [ v 1 T v 2 T ⋮ v n T ] V_1^{-1}= \begin{bmatrix} v_1^T\\ v_2^T\\ \vdots \\ v_n^T \end{bmatrix} V11= v1Tv2TvnT

  1. V 1 − 1 V_1^{-1} V11的第 n n n v n T v_n^T vnT,并按下列规则构造变换矩阵 P P P

P = [ v n T v n T A T ⋮ v n T ( A T ) n − 1 ] P= \begin{bmatrix} v_n^T\\ v_n^TA^T\\ \vdots \\ v_n^T(A^T)^{n-1} \end{bmatrix} P= vnTvnTATvnT(AT)n1

  1. P P P的逆阵 P − 1 P^{-1} P1,并引入 P − 1 P^{-1} P1变换,即 z = P − 1 z ‾ z=P^{-1}\overline{z} z=P1z,变换后动态方程为:

z ‾ ˙ = P A T P − 1 z ‾ + P c T v , w ‾ = b T P − 1 z ‾ \dot{\overline{z}}=PA^TP^{-1}\overline{z}+Pc^Tv,\overline{w}=b^TP^{-1}\overline{z} z˙=PATP1z+PcTv,w=bTP1z

  1. 对对偶系统再利用对偶原理,即可获得原系统的可观测标准型,结果为:

x ‾ ˙ = ( P A T P − 1 ) T x ‾ + ( b T P − 1 ) T u = P − T A P T x ‾ + P − T u y ‾ = ( P c T ) T x ‾ = c P T x ‾ \begin{aligned} &\dot{\overline{x}}=(PA^TP^{-1})^T\overline{x}+(b^TP^{-1})^Tu=P^{-T}AP^T\overline{x}+P^{-T}u\\\\ &\overline{y}=(Pc^T)^T\overline{x}=cP^T\overline{x} \end{aligned} x˙=(PATP1)Tx+(bTP1)Tu=PTAPTx+PTuy=(PcT)Tx=cPTx

将原系统化为可观测标准型需要进行 P T P^T PT变换,即令:
x = P T x ‾ x=P^T\overline{x} x=PTx
其中:
P T = [ v n A v n ⋯ A n − 1 v n ] P^T=\begin{bmatrix}v_n & Av_n & \cdots & A^{n-1}v_n\end{bmatrix} PT=[vnAvnAn1vn]
v n v_n vn为原系统可观测性矩阵的逆阵中第 n n n行的转置;

2.7.3 非奇异线性变换的不变特性
  • A A A阵对角化或约当化,需要进行 P P P变换;
  • A , b A,b A,b化为可控标准型,需要进行 P − 1 P^{-1} P1变换;
  • A , c A,c A,c化为可观测标准型,需要进行 P T P^T PT变换;
  • 系统经过非奇异线性变换,其特征值、传递矩阵、可控性、可观测性等均保持不变;

设系统动态方程为:
x ˙ = A x + b u , y = C x + D u \dot{x}=Ax+bu,y=Cx+Du x˙=Ax+bu,y=Cx+Du
x = P x ‾ x=P\overline{x} x=Px,变换后动态方程为:
x ‾ ˙ = P − 1 A P x ‾ + P − 1 B u , y = y ‾ = C P x ‾ + D u \dot{\overline{x}}=P^{-1}AP\overline{x}+P^{-1}Bu,y=\overline{y}=CP\overline{x}+Du x˙=P1APx+P1Bu,y=y=CPx+Du

  1. 变换后系统特征值不变;
  2. 变换后系统传递矩阵不变;
  3. 变换后系统可控性不变;
  4. 变换后系统可观测性不变;
2.7.4 线性定常系统的结构分解

系统中有一个状态变量不可控便称系统不可控,因而不可控系统含有可控和不可控两种状态变量;系统中有一个状态变量不可观测称系统不可观测,不可观测系统含有可观测和不可观测两种状态变量;状态变量可分为:可控可观测 x c o x_{co} xco、可控不可观测 x c o ‾ x_{c\overline{o}} xco、不可控可观测 x c ‾ o x_{\overline{c}o} xco、不可控不可观测 x c ‾ o ‾ x_{\overline{c}\overline{o}} xco四类;

结构分解过程可先从整个系统的可控性分解开始,将可控与不可控的状态变量分离开,然后分别对可控和不可控子系统进行可观测性分解,即可分解成四类;

  1. 系统按可控性的结构分解

    设不可控系统的动态方程为:
    x ˙ = A x + B u , y = C x \dot{x}=Ax+Bu,y=Cx x˙=Ax+Bu,y=Cx
    式中: x x x n n n维状态向量, u u u p p p维输入向量, y y y维q维输出向量, A 、 B 、 C A、B、C ABC为具有相应维数的矩阵;

    若系统可控性矩阵的秩为 r ( r < n ) r(r<n) r(r<n),则可从可控性矩阵中选出 r r r个线性无关的列向量 s 1 , s 2 , ⋯ , s r s_1,s_2,\cdots,s_r s1,s2,,sr,另外再任意选取尽可能简单的 n − r n-r nr n n n维列向量 s r + 1 , s r + 2 , ⋯ , s n s_{r+1},s_{r+2},\cdots,s_n sr+1,sr+2,,sn,使它们与 { s 1 , s 2 , ⋯ , s r } \{s_1,s_2,\cdots,s_r\} {s1,s2,,sr}线性无关,这样就构成 n × n n\times{n} n×n非奇异变换矩阵:
    P − 1 = [ s 1 s 2 ⋯ s r ∣ s r + 1 ⋯ s n ] P^{-1}=\begin{bmatrix}s_1 & s_2 & \cdots & s_r & | & s_{r+1} & \cdots & s_n\end{bmatrix} P1=[s1s2srsr+1sn]
    对上式进行非奇异线性变换:
    x = P − 1 [ x c x c ‾ ] x=P^{-1}\begin{bmatrix}x_c\\x_{\overline{c}}\end{bmatrix} x=P1[xcxc]
    变换为下列的规范形式:
    [ x ˙ c x ˙ c ‾ ] = P A P − 1 [ x c x c ‾ ] + P B u , y = C P − 1 [ x c x c ‾ ] \begin{bmatrix} \dot{x}_c\\ \dot{x}_{\overline{c}} \end{bmatrix}=PAP^{-1}\begin{bmatrix}x_c\\x_{\overline{c}}\end{bmatrix}+PBu,y=CP^{-1}\begin{bmatrix}x_c\\x_{\overline{c}}\end{bmatrix} [x˙cx˙c]=PAP1[xcxc]+PBu,y=CP1[xcxc]
    式中: x c x_c xc r r r维可控状态子向量, x c ‾ x_{\overline{c}} xc n − r n-r nr维不可控状态子向量,且:
    P A P − 1 = [ A ‾ 11 A ‾ 12 0 A ‾ 22 ] r 行 n − r 行 , P B = [ B ‾ 1 0 ] r 行 n − r 行 , C P − 1 = [ C ‾ 1 ∣ C ‾ 2 ] q 行 PAP^{-1}= \begin{bmatrix} \overline{A}_{11} & \overline{A}_{12}\\ 0 & \overline{A}_{22} \end{bmatrix}\begin{matrix}r行\\n-r行\end{matrix}, PB=\begin{bmatrix} \overline{B}_1\\0 \end{bmatrix}\begin{matrix}r行\\n-r行\end{matrix},CP^{-1}=\begin{bmatrix}\overline{C}_1&|&\overline{C}_2\end{bmatrix}\begin{matrix}q行\end{matrix} PAP1=[A110A12A22]rnr,PB=[B10]rnrCP1=[C1C2]q
    即有:
    x ˙ c = A ‾ 11 x c + A ‾ 12 x c ‾ + B ‾ 1 u , x ˙ c ‾ = A ‾ 22 x c ‾ y = C ‾ 1 x c + C ‾ 2 x c ‾ \begin{aligned} &\dot{x}_c=\overline{A}_{11}x_c+\overline{A}_{12}x_{\overline{c}}+\overline{B}_1u,\dot{x}_{\overline{c}}=\overline{A}_{22}x_{\overline{c}}\\\\ &y=\overline{C}_{1}x_c+\overline{C}_2x_{\overline{c}} \end{aligned} x˙c=A11xc+A12xc+B1ux˙c=A22xcy=C1xc+C2xc
    可控子系统动态方程为:
    x ˙ c = A ‾ 11 x c + A ‾ 12 x c ‾ + B ‾ 1 u , y 1 = C ‾ 1 x c \dot{x}_c=\overline{A}_{11}x_c+\overline{A}_{12}x_{\overline{c}}+\overline{B}_1u,y_1=\overline{C}_1x_c x˙c=A11xc+A12xc+B1u,y1=C1xc
    不可控子系统动态方程为:
    x ˙ c ‾ = A ‾ 22 x c ‾ , y 2 = C ‾ 2 x c ‾ \dot{x}_{\overline{c}}=\overline{A}_{22}x_{\overline{c}},y_2=\overline{C}_2x_{\overline{c}} x˙c=A22xc,y2=C2xc
    系统可控性规范分解的系统方块图如下图所示:

    21

    系统结构的可控性规范分解的特点:

    1. 不可控系统与其可控子系统具有相同的传递函数矩阵;如果从传递特性的角度分析系统 ( A , B , C ) (A,B,C) (A,B,C),可以等价地用分析子系统 ( A ‾ 11 , B ‾ 1 , C ‾ 1 ) (\overline{A}_{11},\overline{B}_1,\overline{C}_1) (A11,B1,C1)来代替;

    2. 不可控子系统的特性与整个系统的稳定性及输出响应有关;

      输入 u u u只能通过可控子系统传递到输出,与不可控子系统无关,故 u u u y y y之间的传递函数矩阵描述不能反映不可控部分的特性;

    3. 不可控系统的可控性规范分解是不唯一的。

    4. 不可控系统的可控性规范分解将整个系统的特征值分解为可控因子与不可控因子两类;

      x c x_c xc的稳定性完全由 A ‾ 11 \overline{A}_{11} A11的特征值 λ 1 , λ 2 , ⋯ , λ r \lambda_1,\lambda_2,\cdots,\lambda_r λ1,λ2,,λr决定; x c ‾ x_{\overline{c}} xc的稳定性完全由 A ‾ 22 \overline{A}_{22} A22的特征值 λ r + 1 , ⋯ , λ n \lambda_{r+1},\cdots,\lambda_n λr+1,,λn决定,而 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn都是 A A A的特征值, λ 1 , ⋯ , λ r \lambda_1,\cdots,\lambda_r λ1,,λr称为系统 ( A , B , C ) (A,B,C) (A,B,C)的可控因子或可控振型, λ r + 1 , ⋯ , λ n \lambda_{r+1},\cdots,\lambda_{n} λr+1,,λn称为不可控因子或不可控振型;

  2. 系统按可观测性的结构分解

    设不可观测系统的动态方程为:
    x ˙ = A x + b u , y = C x \dot{x}=Ax+bu,y=Cx x˙=Ax+bu,y=Cx

    式中: x x x n n n维状态向量, u u u p p p维输入向量, y y y q q q维输出向量;

    系统的可观测性矩阵为:
    V = [ C C A ⋮ C A n − 1 ] V=\begin{bmatrix} C\\ CA\\ \vdots\\ CA^{n-1} \end{bmatrix} V= CCACAn1
    r a n k V = l ( l < n ) {\rm rank}V=l(l<n) rankV=l(l<n),在 V V V中任意选取 l l l个线性无关的行向量 t 1 , t 2 , ⋯ , t l t_1,t_2,\cdots,t_l t1,t2,,tl,此外再选择 n − l n-l nl个与之线性无关的行向量 t l + 1 , ⋯ , t n t_{l+1},\cdots,t_n tl+1,,tn构成非奇异线性变换矩阵:
    T = [ t 1 ⋮ t l t l + 1 ⋮ t n ] T= \begin{bmatrix} t_1\\ \vdots\\ t_l\\ t_{l+1}\\ \vdots\\ t_n \end{bmatrix} T= t1tltl+1tn
    对不可观测系统进行非奇异线性变换:
    x = T − 1 [ x o x o ‾ ] x=T^{-1}\begin{bmatrix}x_o\\x_{\overline{o}}\end{bmatrix} x=T1[xoxo]
    可得系统结构按可观测性分解的规范表达式:
    [ x ˙ o x ˙ o ‾ ] = T A T − 1 [ x o x o ‾ ] + T B u , y = C T − 1 [ x o x o ‾ ] \begin{bmatrix} \dot{x}_o\\ \dot{x}_{\overline{o}} \end{bmatrix}=TAT^{-1}\begin{bmatrix}x_o\\x_{\overline{o}}\end{bmatrix}+TBu,y=CT^{-1}\begin{bmatrix}x_o\\x_{\overline{o}}\end{bmatrix} [x˙ox˙o]=TAT1[xoxo]+TBu,y=CT1[xoxo]
    式中: x o x_o xo l l l维可观测状态子向量, x o ‾ x_{\overline{o}} xo n − l n-l nl维不可观测状态子向量,且:
    T A T − 1 = [ A ^ 11 0 A ^ 21 A ^ 22 ] , T B = [ B ^ 1 B ^ 2 ] , C T − 1 = [ C ^ 1 0 ] TAT^{-1}=\begin{bmatrix}\hat{A}_{11} & 0\\\hat{A}_{21} & \hat{A}_{22}\end{bmatrix},TB=\begin{bmatrix}\hat{B}_{1}\\\hat{B}_2\end{bmatrix},CT^{-1}=\begin{bmatrix}\hat{C}_1 & 0\end{bmatrix} TAT1=[A^11A^210A^22]TB=[B^1B^2],CT1=[C^10]
    展开:
    x ˙ o = A ^ 11 x o + B ^ 1 u x ˙ o ‾ = A ^ 21 x o + A ^ 22 x o ‾ + B ^ 2 u y = C ^ 1 x o \begin{aligned} &\dot{x}_o=\hat{A}_{11}x_o+\hat{B}_1u\\ &\dot{x}_{\overline{o}}=\hat{A}_{21}x_o+\hat{A}_{22}x_{\overline{o}}+\hat{B}_{2}u\\ &y=\hat{C}_1x_o \end{aligned} x˙o=A^11xo+B^1ux˙o=A^21xo+A^22xo+B^2uy=C^1xo
    可观测子系统动态方程为:
    x ˙ o = A ^ 11 x o + B ^ 1 u , y 1 = C ^ x o = y \dot{x}_o=\hat{A}_{11}x_o+\hat{B}_1u,y_1=\hat{C}x_o=y x˙o=A^11xo+B^1u,y1=C^xo=y
    不可观测子系统动态方程为:
    x ˙ o ‾ = A ^ 21 x o + A ^ 22 x o ‾ + B ^ 2 u , y 2 = 0 \dot{x}_{\overline{o}}=\hat{A}_{21}x_o+\hat{A}_{22}x_{\overline{o}}+\hat{B}_2u,y_2=0 x˙o=A^21xo+A^22xo+B^2u,y2=0
    系统可观测性规范分解方块图如下图所示:

    22

这篇关于自动控制原理9.2:线性系统的可控性与可观测性(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669924

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。