本文主要是介绍目标识别和文字检测算法 Faster R-CNN、CTPN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Faster R-CNN 目标检测算法
Towards Real-Time Object Detection with Region Proposal Networks
R-CNN:Regions with CNN features
- Input image
- Extract region proposals(~2k)
- Compute CNN features
- Classify regions
IoU Intersection over Union
测量在特定数据集中检测相应物体准确度的一个标准
预测范围: bounding boxex
ground-truth bounding boxes(人为在训练集图像中标出要检测物体的大概范围)
I o U = A r e a o f O v e r l a p A r e a o f U n i o n IoU = \frac{Area\quad of\quad Overlap}{Area \quad of \quad Union} IoU=AreaofUnionAreaofOverlap
NMS (Non-Maximum Suppression)
Fast R-CNN
Selection search
Anchor sliding window Feature extraction
RPN Loss
Cls label 二分类,是否有物体,使用IoU gt bounding box anchor box
Loc label
t x ∗ = ( x ∗ − x a ) / w a , t y ∗ = ( y ∗ − y a ) / h a , t w ∗ = l o g ( w ∗ / w a ) , t h ∗ = l o g ( t w ∗ ) t_x^* = (x^*-x_a)/w_a, t_y^* = (y^*-y_a)/h_a,\\ t_w^* = log(w^*/w_a), t_h^* = log(t_w^*) tx∗=(x∗−xa)/wa,ty∗=(y∗−ya)/ha,tw∗=log(w∗/wa),th∗=log(tw∗)
t x = ( x − x a ) / w a , t y = ( y − y a ) / h a , t w = l o g ( w / w a ) , t h = l o g ( h / h a ) t_x = (x-x_a)/w_a, t_y = (y-ya)/h_a,\\ t_w = log(w/w_a), t_h = log(h/h_a) tx=(x−xa)/wa,ty=(y−ya)/ha,tw=log(w/wa),th=log(h/ha)
Cls loss
Cross Entropy交叉熵
Loc Loss
z i = 0.5 ( x i − y i ) 2 / b e t a , i f ∣ x i − y i ∣ < b e t a z i = ∣ x i − y i ∣ − 0.5 ∗ b e t a , o t h e r w i s e z_i = 0.5(x_i-y_i)^2/beta, \quad if |x_i-y_i|<beta\\ z_i = |x_i-y_i|-0.5*beta, \quad otherwise zi=0.5(xi−yi)2/beta,if∣xi−yi∣<betazi=∣xi−yi∣−0.5∗beta,otherwise
RoI Head Region of Interest
Mask R-CNN
L = L c l s + L b o x + L m a s k L = L_{cls}+L_{box}+L_{mask} L=Lcls+Lbox+Lmask
To this we apply a per-pixel sigmoid,and define L m a s k L_{mask} Lmask as the average binary cross-entropy loss. For an RoI associated with gorund-truth k, L m a s k L_{mask} Lmask is only defined o the k-th mask(other mask outputs do not contribute to the loss).
RoI Align不对齐,保留浮点,在小区域之内继续划分
CTPN 文字检测算法
Detecting Text in Natural Image with Connectionist Text Proposal Network
- Detecting text in fine-scale proposals
- Recurrent connectionist text proposals
- Side-refinement
v c = ( c y − c y a ) / h a v c ∗ = ( c y ∗ − c y a ) / h a v h = l o g ( h / h a ) v h ∗ = l o g ( h ∗ / h a ) v_c= (c_y-c_y^a)/h^a\\ v_c^* = (c_y^*-c_y^a)/h^a\\ v_h = log(h/h_a)\\ v_h^* = log(h^*/h^a) vc=(cy−cya)/havc∗=(cy∗−cya)/havh=log(h/ha)vh∗=log(h∗/ha)
Text line construction
o ∗ = ( x s i d e ∗ − c x a ) / w a o^* = (x^*_{side} -c^a_x)/w^a o∗=(xside∗−cxa)/wa
Code
bounding box
CRNN 文字识别算法
An End-yo-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
-
CRNN
-
Code
-
CTC
-
lexicon-based
-
lexicon-free
feature sequence —— receptive field感受野
CRNN——CTC
π = − − h h − e − l − l l − o o − − B ( π ) = h e l l o p ( l ∣ y ) = ∑ π : B ( π ) = 1 p ( π ∣ y ) , p ( ′ h e l l o ′ ∣ y ) = ∑ π : B ( π ) = ′ h e l l o ′ p ( π ∣ y ) \pi = --hh-e-l-ll-oo--\\ B(\pi) = hello\\ p(l|y) = \sum_{\pi:B(\pi)=1} p(\pi|y), \quad p('hello'|y) = \sum_{\pi:B(\pi)='hello'} p(\pi|y) π=−−hh−e−l−ll−oo−−B(π)=hellop(l∣y)=π:B(π)=1∑p(π∣y),p(′hello′∣y)=π:B(π)=′hello′∑p(π∣y)
CTC Theory
p ( l ∣ x ) = ∑ π ∈ B − 1 ( 1 ) p ( π ∣ x ) . h ( x ) = a r g m a x 1 ∈ L ≤ T p ( l ∣ x ) . O M L ( S , N w ) = − ∑ ( x , z ) ∈ S l n ( p ( z ∣ x ) ) = − ∑ ( x , z ) ∈ S l n ( ∑ π ∈ B − 1 ( z ) p ( π ∣ x ) ) p(l|x) = \sum_{\pi \in B^{-1}(1)} p(\pi|x).\\ h(x) = arg\quad max_{1\in L\leq T} \quad p(l|x).\\ O^{ML}(S,N_w) = -\sum_{(x,z)\in S} ln(p(z|x))=-\sum_{(x,z) \in S} ln(\sum_{\pi \in B^{-1}(z)} p(\pi |x)) p(l∣x)=π∈B−1(1)∑p(π∣x).h(x)=argmax1∈L≤Tp(l∣x).OML(S,Nw)=−(x,z)∈S∑ln(p(z∣x))=−(x,z)∈S∑ln(π∈B−1(z)∑p(π∣x))
为了让所有的path都能在图中唯一、合法的表示,结点转换有如下约束:
- 转换只能往右下方向,其他方向不允许
- 相同的字符之间起码要有一个空字符
- 非空字符不能被跳过
- 起点必须从前两个字符开始
- 终点必须落在结尾两个字符
forward-backward
定义在时刻t经过节点s的全部前缀子路径的概率总和为前向概率 α t ( s ) \alpha_t(s) αt(s)
α 3 ( 4 ) = p ( a p ) + p ( a a p ) + p ( a p ) + p ( a p p ) \alpha_3(4) = p(_ap)+p(aap)+p(a_p)+p(app) α3(4)=p(ap)+p(aap)+p(ap)+p(app)
-
情况1:第s个符号为空符号blank
α t ( s ) = ( α t − 1 ( s ) + α t − 1 ( s − 1 ) ) ⋅ y s e q ( s ) t \alpha_t(s) = (\alpha_{t-1}(s)+\alpha_{t-1}(s-1))·y^t_{seq(s)} αt(s)=(αt−1(s)+αt−1(s−1))⋅yseq(s)t -
情况2:第s个符号等于第s-2个符号
α t ( s ) = ( α t − 1 ( s ) + α t − 1 ( s − 1 ) ) ⋅ y s e q ( s ) t \alpha_t(s) = (\alpha_{t-1}(s)+\alpha_{t-1}(s-1))·y^t_{seq(s)} αt(s)=(αt−1(s)+αt−1(s−1))⋅yseq(s)t -
情况3:既不属于情况1,也不属于情况2
α t ( s ) = ( α t − 1 ( s ) + α t − 1 ( s − 1 ) + α t − 1 ( s − 2 ) ) ⋅ y s e q ( s ) t \alpha_t(s) = (\alpha_{t-1}(s)+\alpha_{t-1}(s-1)+\alpha_{t-1}(s-2))·y^t_{seq(s)} αt(s)=(αt−1(s)+αt−1(s−1)+αt−1(s−2))⋅yseq(s)t
不属于情况2
α t ( s ) = ( α t − 1 ( s ) + α t − 1 ( s − 1 ) + α t − 1 ( s − 2 ) ) ⋅ y s e q ( s ) t \alpha_t(s) = (\alpha_{t-1}(s)+\alpha_{t-1}(s-1)+\alpha_{t-1}(s-2))·y^t_{seq(s)} αt(s)=(αt−1(s)+αt−1(s−1)+αt−1(s−2))⋅yseq(s)t
这篇关于目标识别和文字检测算法 Faster R-CNN、CTPN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!