使用deeplabv3+训练自己数据集(迁移学习)

2024-02-02 03:48

本文主要是介绍使用deeplabv3+训练自己数据集(迁移学习),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

在前边一篇文章,我们讲了如何复现论文代码,使用pascal voc 2012数据集进行训练和验证,具体内容可以参考《deeplab v3+在pascal_voc 2012数据集上进行训练》,在本篇文章,我们主要讲述,如何对deeplab v3+进行迁移学习,也即如何使用deeplab v3+算法来训练个人的数据集。

1. 数据集准备

首先在开始之前我们先对数据集做一个简单的说明,由于deeplabv3+使用的TensorFlow框架,并且为了提高训练的速度,因此在训练开始前,需要转换成tfrecorde类型的文件来进行训练,因此,我们直接仿照pascal voc 2012数据集的数据结构来制作数据集,这样我们在训练所需图片准备完成之后可以直接复用转换tfrecorde的脚本。

1.1 标注图片,获取json文件

古人有句话:兵马未动粮草先行,而对深度学习来说,粮草毫无疑问指的是训练的数据,毕竟我们最终的模型都是依靠数据来喂养出来的🐶!因此选择一个趁手的标注工具很重要,此处我推荐使用labelme,标注起来相当方便。

下边我简单说一下lableme安装方法(此处建议使用Anconda来实现环境隔离)。

  1. 安装Ancodna环境,

    执行如下命令:

    conda create --name=labelme python=2.7(这一步python=*选择自己的Python版本)
    activate labelme
  2. 安装软件与依赖

    conda install pyqt
    pip install labelme
  3. 启动与使用

    activate labelme
    labelme

启动完成之后可以看到如下界面:

image-20200927143131553

标注的时候,将物体用线条框起来即可,例如:

img

1.2 转换json,获取png图片

在图像标注完成之后,在我们对应设置的文件夹下有许多json,这些json文件记录了所标注图片的位置以及图片内容等信息,根据这些信息我们可以转换成训练所需要的mask图(此处是png格式的图片)。

虽然labelme中包含labelme_json_to_dataset来帮助我们将json图片转成png图片,但是该命令有一个巨大的缺点就是无法实现批量转换,因此需要我们自己写一个批量转换的脚本来辅助转换。

一个简单的转换脚本如下:

import os
#path = 'C:/Users/tj/Desktop/dd'  # path为labelme标注后的.json文件存放的路径
path = 'C:\\Users\\Administrator\\Desktop\\第五次数据集扩充\\labels'
json_file = os.listdir(path)
for file in json_file:if(file.split('.')[1]=='json'):os.system("labelme_json_to_dataset  %s" % (path + '/' + file))  #
# C:/soft/ev4/venv/Scripts/labelme_json_to_dataset.exe  为labelme_json_to_dataset.exe的路径  path + '/' + file 为读取.json路径print(path + '/' + file)

通过该脚本每一个json文件都会生成一个以其名字命名的文件夹。

image-20200927151507055

进入该文件我们可以看到有如下四个文件:

img.png
lable.png
label_names.txt
label_viz.png

其中第二个文件使我们所需要的用于训练的文件,因此我们需要将该文件整合重命名成其原来json文件的文件名(主要原因是保证和原图的文件名保持一致,便于后续训练)。

从文件夹中提取图片并重命名,我也简单写了一个脚本,可以用于参考,具体内容如下:

import os
path = 'c:\\Users\\Administrator\\Desktop\\temp\\'
output='c:\\Users\\Administrator\\Desktop\\output\\'
fileDirs=os.listdir(path)
for fileDir in fileDirs:file=path+fileDir+"\\label.png"if(os.path.exists(file)):# 输出的文件直接以上层文件夹命名end= len(fileDir);fileName=fileDir[:end-5]os.rename(file,output+fileName+".png")

此处处理完成我们便会的到一系列的mask图片,此时我们便可以着手数据集的制作。

1.3 制作数据集

正如前边所说,我们在制作数据集的时候仿照的是pascal voc 2012的数据集,因此需要创建预期类似文件夹结构。

  1. 我们首先在models/research/deeplab/datasets文件夹下为自己的训练集创建一个目录,目录名称即自己的训练集名称。执行如下命令:
cd ~/models/research/deeplab/datasets
mkdir mydataset
cd mydataset
  1. 创建与voc数据集类似的文件夹
# 存放mask文件
mkdir SegmentationClassRaw
# 存放原图
mkdir JPEGImages
# 存放数据集描述文件
mkdir Segmentation
# 存放预训练权重,如不需要预训练权重可不创建
mkdir tf_initial_checkpoint
# 训练权重保存目录
mkdir train_logs
# 评估以及测试结果的生成目录
mkdir vis
# 存放tfrecorde
  1. 将训练数据放到指定文件夹中:

    1. SegmentationClassRaw:存放mask文件,也就是前边我们所转换提取的png图片
    2. JPEGImages:存放训练集、验证集以及测试集的原始图片
    3. Segmentation:存放数据集描述文件,包含三个文件train.txt、trainval.txtval.txt
      1. train.txt:记录训练集的图片名称
      2. trainval.txt:该文件中所记录的内容,后续既会被当做训练集来训练,后续也会被当做验证集来做验证
      3. val.txt用以记录验证集的图片名称
  2. 转换成tfrecorde文件。

    dataset目录下,执行如下命令:

    python3 "build_voc2012_data.py" \--image_folder="${IMAGE_FOLDER}" \--semantic_segmentation_folder="${SEMANTIC_SEG_FOLDER}" \--list_folder="${LIST_FOLDER}" \--image_format="jpg" \--output_dir="${OUTPUT_DIR}"

​ 执行成功后,会在tfrecorde目录下出现如下文件,证明转换成功:

image-20200927164917463

代码修改

models/research/deeplab/datasets目录下:

  • remove_gt_colormap.py修改的内容如下:

51行左右,

old_raw_pic=np.array(Image.open(filename))
#原来像素比为0:1:2:3乘以50之后变成0:50:100:150
raw_pic=old_raw_pic*50
return raw_pic
  • data_generator.py中修改的内容:

104行左右

# has changed 增加数据集种类,以及训练验证集合的数量,修改物体类别3+1+1
_MYDATASET = DatasetDescriptor(splits_to_sizes={'train':392,'trainval':98,'val':5,},num_classes=5, # classes+label+ignore_labelignore_label=255,
)
#has changed_DATASETS_INFORMATION = {'cityscapes': _CITYSCAPES_INFORMATION,'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,'ade20k': _ADE20K_INFORMATION,'mydataset':_MYDATASET,
}

models/research/deeplab/utils

  • get_dataset_colormap.py文件中

在第41行左右,增加训练种类

# has changed
_MYDATASET='mydataset'

在388行左右,直接使用pascal的colormap

#has changed
elif dataset == _MYDATASET:
return create_pascal_label_colormap()
  • train_utils.py中修改的内容

153行左右,进行训练权重的修改。具体修改参考https://blog.csdn.net/jairana/article/details/83900226

# has changedignore_weight = 0label0_weight = 1  # 对应background,mask中灰度值0label1_weight = 10  # 对应a,mask中灰度值1label2_weight = 10  # 对应b,mask中灰度值2label3_weight = 10 # 对应c,mask中灰度值为3not_ignore_mask = tf.to_float(tf.equal(scaled_labels, 0)) * label0_weight + \tf.to_float(tf.equal(scaled_labels, 1)) * label1_weight + \tf.to_float(tf.equal(scaled_labels, 2)) * label2_weight + \tf.to_float(tf.equal(scaled_labels, 3)) * label3_weight + \tf.to_float(tf.equal(scaled_labels, ignore_label)) * ignore_weighttf.losses.softmax_cross_entropy(train_labels,tf.reshape(logits, shape=[-1, num_classes]),weights=not_ignore_mask,scope=loss_scope)# end change

228行,排除列表中增加logits

exclude_list = ['global_step','logits']

在目录models/research/deeplab/deprecated

  • segmentation_dataset.py文件中

在90行,增加数据类别

#has changed_MYDATASET= DatasetDescriptor(splits_to_sizes={'train':392,'trainval':98,'val':5,},num_classes=5,ignore_label=255,#background、ignore_label、ignore_label,即label数+2)

在128行左右,注册新数据集

_DATASETS_INFORMATION = {'cityscapes': _CITYSCAPES_INFORMATION,'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,'ade20k': _ADE20K_INFORMATION,# has changed'mydataset':_MYDATASET
}

models/research/deeplab/train.py目录下

158行左右,修改两个参数(使用所有的预训练权重,除了logits,因为如果是自己的数据集,对应的classes不同(这个我们前面已经设置不加载logits),可设置initialize_last_layer=False和last_layers_contain_logits_only=True),可参考https://blog.csdn.net/u011974639/article/details/80948990

# has changed
flags.DEFINE_boolean('initialize_last_layer',False,'Initialize the last layer.')flags.DEFINE_boolean('last_layers_contain_logits_only', True,'Only consider logits as last layers or not.')

训练与验证

训练

执行如下命令开始进行训练:

python train.py \--logtostderr \--training_number_of_steps=5000 \--train_split="train" \--model_variant="xception_65" \--atrous_rates=6 \--atrous_rates=12 \--atrous_rates=18 \--output_stride=16 \--decoder_output_stride=4 \--train_crop_size="513,513" \--train_batch_size=12 \--dataset="mydataset" \--tf_initial_checkpoint='init_models/deeplabv3_pascal_train_aug/model.ckpt' \--train_logdir='datasets/mydataset/train_logs' \--dataset_dir='datasets/mydataset/tfrecord'

验证

python eval.py \--logtostderr \--eval_split="val" \--model_variant="xception_65" \--atrous_rates=6 \--atrous_rates=12 \--atrous_rates=18 \--output_stride=16 \--decoder_output_stride=4 \--eval_crop_size="1217,1921" \--checkpoint_dir='models/research/deeplab/datasets/mydataset/train_logs' \--eval_logdir='datasets/mydataset/eval' \--dataset_dir='datasets/mydataset/tfrecord' \--max_number_of_evaluations=1

遇到的如果问题与解决方案

  1. 无法找到slim。

    解决方法:进入models/research目录下执行

    export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim:`pwd`/deeplab\
  2. 数据格式不支持,检查是否注册了自己的数据格式

这篇关于使用deeplabv3+训练自己数据集(迁移学习)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669383

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数