关于查询区间最小没出现的自然数的cdq方法的可行性探讨

2024-02-02 03:38

本文主要是介绍关于查询区间最小没出现的自然数的cdq方法的可行性探讨,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述这道题显然有一个可持久化线段树的做法。

首先我们意识到这个极广的值域没有什么用处。

我们首先想到必然存在一个 x \ x  x使答案为 x \ x  x或者 [ 1 , x − 1 ] \ [1,x-1]  [1,x1]中的最小的不存在的数字。

所以首先我们想到找到这个 x \ x  x然后把没有必要的数字全部删掉,这样剩下的数字必然再 [ 1 , n ] \ [1,n]  [1,n]中。

之后我们想到将 a i \ a_{i}  ai i \ i  i点存在转换为 a i \ a_{i}  ai [ 1 , i − 1 ] , [ i + 1 , n ] \ [1,i-1],[i+1,n]  [1,i1],[i+1,n]中不存在,设 i \ i  i的两个值为 q = i − 1 , w = i + 1 \ q=i-1,w=i+1  q=i1,w=i+1,这样任意询问 [ l , r ] \ [l,r]  [l,r]就是 q ≥ r \ q \ge r  qr或者 w ≤ l \ w \le l  wl的数字中的最小值。这显然是一个一维偏序问题,那么我们显然可以将每个询问看做两个,直接桶排序即可。复杂度 O ( n ) \ O(n)  O(n)

实际上这种方法仅限于值的两两不同。

如果相同的值是存在的,那么我们依然可以将问题改变。显然如果同时存在两个值相同 a i = a j , i < j \ a_{i}=a_{j},i<j  ai=aj,i<j,那么显然为 a i \ a_{i}  ai [ 1 , i − 1 ] , [ i + 1 , j − 1 ] , [ j + 1 , n ] \ [1,i-1],[i+1,j-1],[j+1,n]  [1,i1],[i+1,j1],[j+1,n]不存在,我们将其拆为三个操作, q 1 = 1 , w 1 = i − 1 , q 2 = i + 1 , w 2 = j − 1 , q 3 = j + 1 , w 3 = n \ q_{1}=1,w_{1}=i-1,q_{2}=i+1,w_{2}=j-1,q_{3}=j+1,w_{3}=n  q1=1w1=i1,q2=i+1,w2=j1,q3=j+1,w3=n。对于每个询问 [ l , r ] \ [l,r]  [l,r],即 q ≤ l \ q \le l  ql w ≥ r \ w \ge r  wr的最小值。那么我们先按照 q \ q  q或者 l \ l  l排序,cdq中按照 r \ r  r或者 w \ w  w,然后求解即可。 O ( n log ⁡ 2 n ) \ O(n \log_{2}{n})  O(nlog2n)

#include<bits/stdc++.h>
using namespace std;
inline int read()
{char ch = getchar(); int x = 0;while (!isdigit(ch)) ch = getchar();while (isdigit(ch)){ x = x*10+ch-'0'; ch = getchar(); }return x;
}
int n,a[300300],b[300300],m,xxx,tot=0,head,tail,ans[200200];
struct nobe
{int op,l,r,w,id;
}q[600600],tmp[600600];
inline bool cmp(nobe a,nobe b)
{return (a.l^b.l) ? (a.l<b.l) : (a.op<b.op);
}
inline void cdq(int l,int r)
{if(l==r) return ;int mid=(l+r)>>1;cdq(l,mid);cdq(mid+1,r);int i=l,j=mid+1,ccnt=0,sum=999999999;while(j<=r){while((q[i].r>=q[j].r)&&(i<=mid)){tmp[++ccnt]=q[i];if(q[i].op&1){sum=min(sum,q[i].w);}++i;}tmp[++ccnt]=q[j];if(q[j].op^1){ans[q[j].id]=min(ans[q[j].id],sum);}++j;}while(i<=mid){tmp[++ccnt]=q[i];++i;}i=1;while(i<=ccnt){q[l+i-1]=tmp[i];++i;}
}
int main()
{memset(b,0,sizeof(b));n=read();m=read();int i=1;while(i<=n){a[i]=read();if(a[i]<=n) ++b[a[i]];++i;}i=-1;while(i<=n){if(b[i+1]) ++i;else break;}xxx=i+1;i=0;while(i<xxx){b[i]=0;++i;}i=1;while(i<=n){if(a[i]<xxx){if((i^1)&&(b[a[i]]^i-1)){q[++tot]=(nobe){1,b[a[i]]+1,i-1,a[i],0};}b[a[i]]=i;}++i;}i=0;while(i<xxx){if(b[i]^n) q[++tot]=(nobe){1,b[i]+1,n,i,0};++i;}i=1;while(i<=m){int l,r;l=read();r=read();ans[i]=xxx;q[++tot]=(nobe){2,l,r,0,i};++i; }sort(q+1,q+tot+1,cmp);cdq(1,tot);i=1;while(i<=m){printf("%d\n",ans[i]);++i;}return 0;
}

实际上只出现一次的数字依然可以桶排序来解决,将大大优化常数。

这篇关于关于查询区间最小没出现的自然数的cdq方法的可行性探讨的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669361

相关文章

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.