ayit-609 寒假训练三-E

2024-02-01 21:18
文章标签 训练 寒假 609 ayit

本文主要是介绍ayit-609 寒假训练三-E,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源 poj1860

everal currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4.
Output
If Nick can increase his wealth, output YES, in other case output NO to the output file.
*

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES
大意:有N种货币 ,M个兑换点 Nick,拥有的是其中一种S ,总值为 V 。
每个兑换点给出 A , B , A换B的兑换率 , A换B佣金, B换A的兑换率 ,B换a的佣金。
兑换规则 兑换后=(本金-佣金)相应兑换率。`#include<stdio.h>
#include<string.h>
#include
using namespace std;
typedef long long ll;
const double eps=1e-8;
const int N=105;
double dist[N],rate[N][N],cost[N][N];
int n,m,s,x,y;
double num,a1,b1,a2,b2;
struct edge
{
int b,e;
double rate,cost;
}v[N
2];
bool Bellman()
{

    for(int i=1;i<n+1;i++)dist[i]=0;dist[s]=num;while(dist[s]<=num+eps)///比原来多可以跳出循环{int flog=1;for(int i=0;i<2*m;i++){double cas=(dist[v[i].b]-v[i].cost)*v[i].rate;if(cas>dist[v[i].e]+eps){flog=0;dist[v[i].e]=cas;}}if(flog)return dist[s]>num;}return true;
}
int main()
{while(~scanf("%d%d%d%lf",&n,&m,&s,&num)){for(int i=0;i<m;i++){scanf("%d%d%lf%lf%lf%lf",&x,&y,&a1,&b1,&a2,&b2);v[i].b=x;v[i].e=y;v[i].rate=a1;v[i].cost=b1;v[i+m].b=y;v[i+m].e=x;v[i+m].rate=a2;v[i+m].cost=b2;}if(Bellman())printf("YES\n");elseprintf("NO\n");}return 0;
}

`

这篇关于ayit-609 寒假训练三-E的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/668495

相关文章

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

多云架构下大模型训练的存储稳定性探索

一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平

神经网络训练不起来怎么办(零)| General Guidance

摘要:模型性能不理想时,如何判断 Model Bias, Optimization, Overfitting 等问题,并以此着手优化模型。在这个分析过程中,我们可以对Function Set,模型弹性有直观的理解。关键词:模型性能,Model Bias, Optimization, Overfitting。 零,领域背景 如果我们的模型表现较差,那么我们往往需要根据 Training l

如何创建训练数据集

在 HuggingFace 上创建数据集非常方便,创建完成之后,通过 API 可以方便的下载并使用数据集,在 Google Colab 上进行模型调优,下载数据集速度非常快,本文通过 Dataset 库创建一个简单的训练数据集。 首先安装数据集依赖 HuggingFace datasetshuggingface_hub 创建数据集 替换为自己的 HuggingFace API key

【YOLO 系列】基于YOLOV8的智能花卉分类检测系统【python源码+Pyqt5界面+数据集+训练代码】

前言: 花朵作为自然界中的重要组成部分,不仅在生态学上具有重要意义,也在园艺、农业以及艺术领域中占有一席之地。随着图像识别技术的发展,自动化的花朵分类对于植物研究、生物多样性保护以及园艺爱好者来说变得越发重要。为了提高花朵分类的效率和准确性,我们启动了基于YOLO V8的花朵分类智能识别系统项目。该项目利用深度学习技术,通过分析花朵图像,自动识别并分类不同种类的花朵,为用户提供一个高效的花朵识别

深度学习与大模型第3课:线性回归模型的构建与训练

文章目录 使用Python实现线性回归:从基础到scikit-learn1. 环境准备2. 数据准备和可视化3. 使用numpy实现线性回归4. 使用模型进行预测5. 可视化预测结果6. 使用scikit-learn实现线性回归7. 梯度下降法8. 随机梯度下降和小批量梯度下降9. 比较不同的梯度下降方法总结 使用Python实现线性回归:从基础到scikit-learn 线性

使用openpose caffe源码框架训练车辆模型常见错误及解决办法

错误1:what():  Error: mSources.size() != mProbabilities.size() at 51, OPDataLayer, src/caffe/openpose/layers/oPDataLayer.cpp 原因:这是因为在网络模型中数据源sources和probabilities设置的参数个数不一样导致的,一个数据源对应一个概率 解决方法:只需要将网络文