Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践(二)

2024-02-01 07:28

本文主要是介绍Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一篇文章中,我们成功验证了Intel Threading Building Blocks (TBB) 与 OpenMP 在多线程并行处理方面的加速潜力。为了更深入地理解这些技术在实际应用场景中的效能提升,接下来我们将目光转向目标开发板环境,进一步探究这两种框架在嵌入式系统上的实际加速效果。
一、OPENMP加速效果测试
在探讨OPENMP对性能提升的影响时,我们首先遇到了一个有趣的插曲。通常情况下,OpenMP作为一项编译器层面的支持特性,只需在编译阶段通过简单的命令行标志即可启用,例如在使用make构建时追加-fopenmp参数,或在CMake项目中配置如set(CMAKE_CXX_FLAGS “-fopenmp”),即可轻松为项目开启并行处理能力。

然而,在针对RV1106平台的交叉编译环境中,我们发现原生的交叉编译工具链并不支持OpenMP功能。通过执行arm-rockchip830-linux-uclibcgnueabihf-gcc -v来查看编译器详细信息时,注意到其构建选项中包含了–disable-libgomp,这意味着该编译器在构建之初就已排除了对OpenMP库的支持。这可能是因为RV1106芯片本身为单核架构,考虑到硬件资源有限,制造商在设计工具链时并未考虑多线程并行处理的需求。
RV1106交叉编译器能力
尽管如此,面对手头仅有的嵌入式开发环境限制,我们并未止步于此。经过深入研究和探索,最终成功实现了对该交叉编译器OpenMP支持的集成。虽然整个过程尚未完全优化与标准化,此处暂且略过具体实现细节,我们将简要概述如何使编译器支持OpenMP以及随后进行的测试效果评估。

交叉编译器不支持的临时解决办法:
1、从源码编译openmp:
官网介绍:https://www.openmp.org/specifications/
下载地址:https://github.com/OpenMP/sources
编译过程比较简单:在源码中将makefile的configure 后面指定当前的编译工具链路径和生产路径。

all: mkdir src/libgomp/build ;          \cd src/libgomp/build &&            \../configure --host=arm-rockchip830-linux-uclibcgnueabihf && \$(MAKE)

2、编译好的libgomp放入工具链
我生成的libgomp 路径在 libgomp-master\src\libgomp\build.libs 下面,将其中的
libgomp.so libgomp.so.1 libgomp.so.1.0.0 以及上一级目录的libgomp.spec 一共四个文件拷贝到工具链的以下两个路径:

/arm-rockchip830-linux-uclibcgnueabihf/arm-rockchip830-linux-uclibcgnueabihf/lib/lib
/arm-rockchip830-linux-uclibcgnueabihf/arm-rockchip830-linux-uclibcgnueabihf/sysroot/lib/

编译测试:
在编译过程中,直接加入-fopenmp指令:

arm-rockchip830-linux-uclibcgnueabihf-g++ OptCvTestWin.cpp -o test -fopenmp

即可生成可执行文件。
此处不用cmake编译,因为写好的cmakelist中配置的-fopenmp不生效。

加速效果:

# ./test cv F1 Time = 79  rslt 3.20518e+10cv F2 Time = 153  rslt 3.20518e+10cv F1 Time = 91  rslt 2.99779e+10cv F2 Time = 166  rslt 2.99779e+10cv F1 Time = 76  rslt 2.93042e+10cv F2 Time = 166  rslt 2.93042e+10cv F1 Time = 75  rslt 3.1813e+10cv F2 Time = 158  rslt 3.1813e+10cv F1 Time = 75  rslt 3.18925e+10cv F2 Time = 177  rslt 3.18925e+10cv F1 Time = 81  rslt 3.07783e+10cv F2 Time = 158  rslt 3.07783e+10cv F1 Time = 90  rslt 3.05833e+10cv F2 Time = 156  rslt 3.05833e+10cv F1 Time = 76  rslt 2.83669e+10cv F2 Time = 158  rslt 2.83669e+10cv F1 Time = 91  rslt 3.42625e+10cv F2 Time = 170  rslt 3.42625e+10cv F1 Time = 75  rslt 3.44049e+10cv F2 Time = 163  rslt 3.44049e+10

对比了多线程方案F1与常规单线程方案F2的执行速度(单位ms)。实验发现,随着OpenMP线程数从2增至10,F1的加速效果逐步提升;但超过10个线程后,加速收益不再明显增加。这表明存在一个最优线程数阈值,在该范围内使用OpenMP能有效提高程序性能。

测试的代码放出来:
整体上跑10遍观察效果,选取其中一部分数据打印看结果是否一致。

#include <fstream>
#include <iostream>
#include <vector>
//#include <opencv2/opencv.hpp>
//#include "libgomp.h"
#include <future>
#include <thread>
//#include <tbb/parallel_for.h>
//#include <tbb/blocked_range.h>
#include <chrono>
//using namespace cv;
using namespace std;typedef std::chrono::system_clock::time_point SYS_TIME;
SYS_TIME getClock()
{return std::chrono::system_clock::now();
}
double getMsTime(SYS_TIME start, SYS_TIME end)
{return  std::chrono::duration_cast<std::chrono::milliseconds>(end-start).count();
}
int main()
{for (int j =0; j <10; j++)
{const int iCnt = 1000000;std::vector<float> data1(iCnt);std::vector<float> data2(iCnt);for (float i = 0; i < iCnt; ++i) {data1[i] = rand(); // 假设填充了随机整数data2[i] = data1[i];}float fv1=0;SYS_TIME start = getClock();
#pragma omp parallel num_threads(4){
#pragma omp forfor(int i = 0; i < iCnt; i++){data1[i]+=i;if(i>iCnt/3&&i<iCnt/3+30)fv1+=data1[i];}}cout << " cv F1 Time = " << getMsTime(start, getClock()) <<"  rslt "<< fv1  << endl;float fv2=0;SYS_TIME start2 = getClock();{for (float i = 0; i < iCnt; i++){data2[i]+=i;if(i>iCnt/3&&i<iCnt/3+30)fv2+=data2[i];}}cout << " cv F2 Time = " << getMsTime(start2, getClock()) <<"  rslt "<< fv2  << endl;
}    return 0;
}

后记:
在本阶段的技术探索中,我们遇到了CMakeLists.txt中设置的OpenMP编译选项未能生效的问题。尽管GPT暂时无法给出具体原因,但当前的重点已转向验证OpenMP的实际加速效果,并发现尽管其在基准测试中表现出显著优势,但在实际业务工程应用时却遭遇了挑战。由于现有工程完全依赖于由CMake构建的Makefile体系,直接修改Makefile以整合OpenMP支持无疑会增加额外的工作量。
在这里插入图片描述
1、一种解决方案是联系RK(瑞芯微)厂家,请求提供一个内建OpenMP支持的交叉编译器版本,或者自行构建这样一个工具链。然而,鉴于目前的知识储备尚不足以完成这一任务,该方案暂时尚未实施
2、另个一个可行的方案是,将预先编译好的libgomp库作为静态或动态链接库与可执行文件进行链接。这种方法虽然理论上可行,但在调用OpenMP接口和管理库依赖方面可能会遇到复杂性问题,需要进一步技术评估。

接下来的步骤,我们将把注意力转向Intel Threading Building Blocks (TBB) 并行编程库,计划对其进行编译和测试验证,以对比分析其对项目性能提升的效果。

这篇关于Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666518

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象