【脑电信号处理与特征提取】P7-贾会宾:基于EEG/MEG信号的大尺度脑功能网络分析

本文主要是介绍【脑电信号处理与特征提取】P7-贾会宾:基于EEG/MEG信号的大尺度脑功能网络分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于EEG/MEG信号的大尺度脑功能网络分析

Q: 什么是基于EEG/MEG信号的大尺度脑功能网络分析?
A: 基于脑电图(EEG)或脑磁图(MEG)信号的大尺度脑功能网络分析是一种研究大脑活动的方法,旨在探索脑区之间的功能连接和信息传递。

概述

基于EEG/MEG信号的大尺度脑功能网络分析的优势
(1)借助源定位技术可同时获得较高的时间(ms级)和空间分辨率(mm级)
(2)可提供丰富的频率信息
(3)便宜性:成本、数据长度的要求等

基于EEG/MEG信号的大尺度脑功能网络分析技术
(1)基于地形图聚类的微状态(Microstate)分析
(2)隐马科夫模型(Hidden Markov Model,HMM)
(3)独立成分分析(Independent Component Analysis,ICA)

静息态EEG微状态分析对数据的要求

  1. 静息态
  2. 电极全脑覆盖且电极数目大于20个
  3. 数据长度:预处理后最终长度大于3min
  4. 对数据质量及预处理的要求:全脑平均参考,各个电极有空间坐标、较高数据质量特别是无坏电极

微状态分析中的基本概念

  1. Global Field Power(GFP):某个时间点地形图所有电极电压值的标准差

在这里插入图片描述
(1)GFP是reference-free的指标
(2)GFP可用于描述某时刻地形图的电场强度:GFP较高的地形图较为“陡峭”、信噪比高

  1. 描述地形图之间的相似性(或不相似性)的指标
    (1)总体地形图不相似性(Global Map Dissimilarity,GMD):GMD取值范围为0(两个地形图分别处以其GFP后完全相同)到2(两个地形图分别除以其GFP后极性完全反转)。(都除以GFP的目的是使两个地形图排除强度的影响,可以理解为归一化到某一个纬度在进行比较)
    在这里插入图片描述
    (2)空间相关系数(Spatial Correlation Coefficient,SCC):SCC取值范围为-1(两个地形图分别除以其GFP后极性完全反转)到1(两个地形图分别除以其GFP后完全相同)

微状态分析概述

在这里插入图片描述
下图上方波形是采集到的一段脑电信号,每一个波形是一个电极的信号,一共四秒,每一个时刻都可以绘制一个地形图,比如采样率是1000Hz,采集一分钟的数据,就会有60x1000=60000个地形图,所以可以绘制上万个地形图。即得到地形图的时间序列
然后对地形图的时间序列聚类,聚类使用的就是GMD和SCC,相似性高的或者SCC高的进行聚类。
一般来说都可以聚类为四类地形图,得到这四类地形图就可以分析每一个时刻点属于哪一类地形图。因为每个时刻点的地形图都可以分别跟四类地形图求SCC和GMD,看哪个相似性最高。最后就可以得到下图最后一行的时间序列,每种颜色分别表示属于哪一类。
在这里插入图片描述
上面得到的时间序列可以验证概述中所描述的(1)“地形图的拓扑结构总是在一定时间内保持想对稳定的状态,之后迅速转换为另一个在一定时间内保持相对稳定的状态”,刚开始灰色(属于B类),一段时间后又是绿色(属于A类),一般时间又变成灰色…(2)“在地形图拓扑结构保持相对稳定的一段时间范围内,地形图的强度(GFP)可能增大或降低”,在时间序列中,颜色表示类别,包络表示GFP ,可以看到在同一个类别的连续时间内,GFP值也是一直变化的。

关于微状态分析中的几个问题

在这里插入图片描述

静息态EEG信号微状态分析的经典流程

在这里插入图片描述

基于k-means的微状态类别识别流程

在这里插入图片描述
流程和一般的聚类是相同的,只不过这里初始化的k个点是k个地形图,比如下面的例子,在十个地形图中随机选择两个地形图作为模板,分别命名为A、B。
然后分别求十个地形图与A、B的空间相关系数或GMD,这线图中绿色的点表示与B的相似度,黄色的点表示与A的相似度,最后选择相似度高的类别将每一个地形图归类,第一个聚类结果是十个地形图类别分别是AAA BB AA B AA。然后对所有的A类地形图求平均得到新的模板A,对所有B类地形图求平均得到新的模板B。重复上面的步骤再进行聚类,直到A和B不再更新,终止算法。
在这里插入图片描述

基于(T-)AAHC的微状态类别识别流程

在这里插入图片描述
每个时间点为一个类别,有n个地形图,数据就可以分为n类,然后找最坏的类别,(如何找最好的类别:比如找方差解释比例最小的类别,也就是最不重要的类别。),将最坏的类别分配给相关性最高的类别,剩下就为n-1个类别,在找最坏的…不断迭代。

微状态分析的软件/工具箱

在这里插入图片描述

微状态技术学习必看文献

在这里插入图片描述

这篇关于【脑电信号处理与特征提取】P7-贾会宾:基于EEG/MEG信号的大尺度脑功能网络分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666300

相关文章

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带

Java实现数据库图片上传功能详解

《Java实现数据库图片上传功能详解》这篇文章主要为大家详细介绍了如何使用Java实现数据库图片上传功能,包含从数据库拿图片传递前端渲染,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、数据库搭建&nbsChina编程p; 3、后端实现将图片存储进数据库4、后端实现从数据库取出图片给前端5、前端拿到

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

如何关闭 Mac 触发角功能或设置修饰键? mac电脑防止误触设置技巧

《如何关闭Mac触发角功能或设置修饰键?mac电脑防止误触设置技巧》从Windows换到iOS大半年来,触发角是我觉得值得吹爆的MacBook效率神器,成为一大说服理由,下面我们就来看看mac电... MAC 的「触发角」功能虽然提高了效率,但过于灵敏也让不少用户感到头疼。特别是在关键时刻,一不小心就可能触

MobaXterm远程登录工具功能与应用小结

《MobaXterm远程登录工具功能与应用小结》MobaXterm是一款功能强大的远程终端软件,主要支持SSH登录,拥有多种远程协议,实现跨平台访问,它包括多会话管理、本地命令行执行、图形化界面集成和... 目录1. 远程终端软件概述1.1 远程终端软件的定义与用途1.2 远程终端软件的关键特性2. 支持的

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

Python实现多路视频多窗口播放功能

《Python实现多路视频多窗口播放功能》这篇文章主要为大家详细介绍了Python实现多路视频多窗口播放功能的相关知识,文中的示例代码讲解详细,有需要的小伙伴可以跟随小编一起学习一下... 目录一、python实现多路视频播放功能二、代码实现三、打包代码实现总结一、python实现多路视频播放功能服务端开

css实现图片旋转功能

《css实现图片旋转功能》:本文主要介绍了四种CSS变换效果:图片旋转90度、水平翻转、垂直翻转,并附带了相应的代码示例,详细内容请阅读本文,希望能对你有所帮助... 一 css实现图片旋转90度.icon{ -moz-transform:rotate(-90deg); -webkit-transfo