【遥感专题系列】遥感影像信息提取之——人工目视解译

2024-01-31 14:52

本文主要是介绍【遥感专题系列】遥感影像信息提取之——人工目视解译,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    ​遥感影像通过亮度值或像元值的高低差异(反映地物的光谱信息)及空间变化(反映地物的空间信息)来表示不同地物的差异,这是区分不同影像地物的物理基础。

    ​人工解译是目前国内使用最多的一种影像提取方法,如土地普查、地质普查、水利普查等。这类方法非常灵活,但需要一定的经验,特别是像地质解译等,对业务专业要求比较多。

本专题分以下内容:

  • 遥感图像解译基本概念

  • 遥感图像解译预处理

  • 解译标志的建立

  • 解译关键问题

遥感图像解译

    ​人们对地表物体的有关领域,如土地利用存在一种先验知识,在遥感图像寻找对应关系。然后,根据遥感图像的影像特征推论地表物体的属性。这一过程就称之为遥感图像的解译,也叫遥感图像的判读。

    ​解译的任务就是从图像上认识,辨别影像与地物的对应关系、判断、归类、地物目标,并用轮廓线圈定它们和赋予属性代码,或用符号、颜色表示属性。

    ​进行图像解译时,把图像中目标物的大小、形状、阴影、颜色、纹理、图案,位置及周围的系统称之为解译的八要素。

(1)大小:拿到图像时必须根据判读目的选定需要的比例尺。根据比例尺的大小,可以预先知道图像上多少毫米的物,在实际距离中为多少米。
(2)形状:由于目标物不同,在图像中会呈现出特殊的形状。用于图像判读的图像通常是垂直拍摄的,所以必须记住目标的成像方式。因为即使同样为树木,针叶林的树冠呈现为圆形,而阔叶树则形状不同,从而可以识别出二者。此外,飞机场,港口设施、工厂等都可以通过它们的形状判读出其功能。

(3)阴影:由于判读存在于山脉等阴影中的树木及建筑时,阴影的存在会给判读者造成麻烦,信往往会使目标丢失。但另一方面,在单像片判读时,利用阴影可以了解铁塔及桥、高层建筑物等的高度及结构。

(4)颜色:黑白像片从白到黑的密度比例叫色调(也叫灰度)。用全色胶片拍摄的像片中,目标物按照其反射率而呈现出白一灰一黑的密度变化。例如,同样为海滩的沙子,干的沙子拍出来发白,而湿沙则发黑。在红外图像上,水域拍出来是黑色的,而植被则发白。

(5)纹理:也叫结构,是指与色调配合看上去平滑或粗糙的纹理的粗细程度,即图像上目标物表面的质感。草场及牧场看上去平滑,造林后的幼树看上去像铺了天鹅绒,针叶树林看上去很粗糙。这种纹理也是判读的线索。

(6)图案:根据目标物的有规律的排列而形成的图案。例如,住宅区的建筑群,农田的垄、高尔春球场的路线和绿地,果树林的树冠等。以这种图案为线索可以容易判别出目标物。

(7)位置及与周围的关系:在(1)-(6)上加上各区域的地理特色及判读者的专业知识等,就可以确定解释的结果。

解译的操作步骤:

(1)影像预处理

(2)初步判读,建立判读标志

(3)野外调查或资料验证

(4)详细判读及其更新目标的定性、定位

(5)图形与属性文件生成

(6)接边

(7)检查通过

遥感图像解译预处理

    ​预处理主要包括:几何校正、融合、裁剪、镶嵌。除了这些传统的预处理外,为了方便目视解译,图像解译中比较重要的处理还包括了波段组合、图像增强、图像变换等。传统的预处理这里就不多说了,这里介绍一下其他几个预处理方法。

一、波段组合

其作用在于:

  • 扩展地物波段的差异性

  • 表现差异显示的动态范围,扩展肉眼观察的可视性

  • 综合选取各波段的特点

  • 不同类别、形态得到良好的表达

    ​多波段组合图像最终是为了提高地物的可判读性,使判读结果更为科学合理。高分辨率影像大多只有4个波段,波段组合常用就是真彩色和标准假彩色。有的时候在土壤分类或者植被分类时候,也可以把植被指数当做G分量。

    ​组合比较丰富的是Landsat数据源,其他数据也可以参考其组合效果。总结如下:

组合(R、G、B)

主要应用

4、3、2

类似于彩色红外图像,是一种标准假彩色图像,用于植被分类、水体识别。

3、2、1

类似于仿制真假彩色图像,用于各种地类识别。影像平淡、色调灰暗、彩色不饱和、信息量相对减少。

7、4、3

类似于仿真彩色图像,用于居民地、水体识别。

7、5、4

是一种非标准假彩色图像,画面偏蓝色,用于特殊的地质构造调查。

5、4、1

是一种非标准假彩色图像,植物类型较丰富,用于研究植物分类。

4、5、3

特点:1)利用了一个红波段、两个红外波段,因此凡是与水有关的地物在图像中都会比较清楚;2)强调显示水体,特别是水体边界很清晰,益于区分河渠与道路;3)由于采用的都是红波段或红外波段,对其它地物的清晰显示不够,但对海岸及其滩涂的调查比较适合;4)具备标准假彩色图像的某些点,但色彩不会很饱和,图像看上去不够明亮;5)水浇地与旱地的区分容易。居民地的外围边界虽不十分清晰,但内部的街区结构特征清楚;6)植物会有较好的显示,但是植物类型的细分会有困难。

3、4、5

它是一种非标准的接近于真色的合成方案。对水系、居民点及其市容街道和公园水体、林地的影像判读是比较有利的。

    ​其中最常用方案:使用4 ,3, 2 , (近红外、红、绿、)配红、绿、蓝,形成标准假彩色图像,是一种在大量总结实际经验基础上的最常用方案。它的地物影像丰富,鲜明、层次好。植被以红色显示,主要用于资源环境和土地利用调查或更新等。

    ​次常用方案:使用3、 4、 5(或7)配蓝、绿、红的合成方案。它是一种非标准的接近于真色的合成方案。(仿真彩色合成方案)它利用了TM图像较丰富的多光谱(红、近红外、短波近红外)对水系、居民点及其市容街道和公园水体、林地的图像判读是比较有利的。

二、植被抑制

植被应该说是地球上分布最广的地物类型,当对于非植被解译来说,就会照成很大的不便,特别是在地质解译中。

图1 tm影像(543组合)

图2 植被抑制之后(543组合)

解译标志的建立

遥感图像判读包括识别、区分、辨别、分类、评定、评价及对某些特殊重要现象的探测与鉴别。其轮廓的勾绘及其属性的赋予是要有依据。依据就是判读标志。也就是说,在遥感图像上研究地表地物的种种特征的总和,就叫判读遥感图像标志。

在数据预处理准备之后,要根据数据源情况、解译目标等信息确立解译标志,编写成表格文档形式,如表1所示:

表1 解译标志的建立

地物名称

特征

实例

林地

1、指生长乔木,树木郁闭度≥20%的各种天然、人工等树木的土地;

2、有林地通常依地形地貌呈面状分布,通常树冠连片,周边规则,色差明显,可见树冠阴影。但有林地不包括居民点绿地,以及铁路、公路、河流、沟渠的护路、护岸林;

3、图像纹理结构粗糙;

4、图像色调阔叶林为鲜红为主,针叶林为暗红为主;

5、在坝上高原农牧交错带,有林地通常分布在地形起伏的山地中,阴坡比阳坡生长较好。

A为人工种植的有林地;B为天然草地

水浇地中的林网

解译关键问题

一、数据源的选择

数据源的选择需要考虑的因素非常多,包括价格、空间分辨率、成像时间、波谱分辨率等因素,如下图所示。

图3 数据源的选择因素

二、解译平台

一个好的解译平台对于工程完成的效率影响非常大,涉及到操作的便捷、数据格式的互操作、结果的储存和管理等。对于高分辨率影像的解译,很多软件都具有半自动跟踪功能。

三、经验的积累

图像解译以相关的专业知识和经验为主导,图像处理为辅助,经验是在实践中逐步总结,如下为一些经验性的总结:

  • 总体观察→到局部详细分析
  • 综合分析→前人调查资料、地面实况
  • 对比分析→地面调绘图、土地利用图
  • 已知→未知
  • 易→难
  • 山区→平原
  • 整体→局部(大类→二级分类)
  • 宏观特征→细部结构
  • 先线状地物→后图形

这篇关于【遥感专题系列】遥感影像信息提取之——人工目视解译的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/664157

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

Java基础回顾系列-第七天-高级编程之IO

Java基础回顾系列-第七天-高级编程之IO 文件操作字节流与字符流OutputStream字节输出流FileOutputStream InputStream字节输入流FileInputStream Writer字符输出流FileWriter Reader字符输入流字节流与字符流的区别转换流InputStreamReaderOutputStreamWriter 文件复制 字符编码内存操作流(

Java基础回顾系列-第五天-高级编程之API类库

Java基础回顾系列-第五天-高级编程之API类库 Java基础类库StringBufferStringBuilderStringCharSequence接口AutoCloseable接口RuntimeSystemCleaner对象克隆 数字操作类Math数学计算类Random随机数生成类BigInteger/BigDecimal大数字操作类 日期操作类DateSimpleDateForma

Java基础回顾系列-第三天-Lambda表达式

Java基础回顾系列-第三天-Lambda表达式 Lambda表达式方法引用引用静态方法引用实例化对象的方法引用特定类型的方法引用构造方法 内建函数式接口Function基础接口DoubleToIntFunction 类型转换接口Consumer消费型函数式接口Supplier供给型函数式接口Predicate断言型函数式接口 Stream API 该篇博文需重点了解:内建函数式