数据结构:大顶堆、小顶堆

2024-01-31 11:44
文章标签 数据结构 大顶 小顶

本文主要是介绍数据结构:大顶堆、小顶堆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

堆是其中一种非常重要且实用的数据结构。堆可以用于实现优先队列,进行堆排序,以及解决各种与查找和排序相关的问题。本文将深入探讨两种常见的堆结构:大顶堆和小顶堆,并通过 C++ 语言展示如何实现和使用它们。

一、定义

堆是一种完全二叉树。完全二叉树的定义:所有节点从上往下,从左往右的依次排列,不能有空位置,是为完全二叉树。

下面是完全二叉树和不完全二叉树的示意图:
在这里插入图片描述

大顶堆:
根节点(堆顶元素)是所有节点中的最大值(父节点都大于左右子节点)。大顶堆常用于实现优先队列,且可用于构建堆排序算法。

小顶堆:
小顶堆中的根节点是所有节点中的最小值(父节点都小于左右子节点)。小顶堆常用于问题如:查找流中的前 K 个最小元素。
在这里插入图片描述

二、实现

通常用 数组 来实现:具体方法就是将二叉树的结点按照 层级顺序 放入数组中, 根结点在 位置1(数组索引0处不存储数据),它的子结点在位置2和3,而子结点的子结点则分别在位置4,5,6和7,以此类推
在这里插入图片描述

  • 如果一个结点的位置为 k,则它的父结点的位置为 k/2
  • 两个子结点的位置则分别为 2k 和 2k+1

2.1 Insert

堆是用 数组 完成数据元素的存储的,由于数组的底层是一串连续的内存地址,所以要往堆中插入数据,只能往数组中从索引0处开始,依次往后存放数据,但是堆中对元素的顺序是有要求的,每一个结点的数据要 大于等于它的两个子结点的数据,所以每次插入一个元素,都会使得堆中的数据顺序变乱,这个时候就需要通过一些方法,让刚才插入的这个数据放入到合适的位置
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
所以,如果往堆中新插入元素,只需要不断的比较新结点 a[k] 和它的父结点 a[k/2] 的大小,然后根据结果完成数据元素的交换,就可以完成堆的有序调整。

2.1 delMax

由大顶堆的特性可以知道,索引1处的元素,也就是根结点就 是最大的元素,把根结点的元素删除后,需要有一个新的根结点出现,这时可以 暂时把堆中最后一个元素放到索引1处,充当根结点,但是它有可能不满足堆的有序性需求,这个时候就需要通过一些方法,让这个新的根结点放入到合适的位置
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所以,当删除掉最大元素后,只需要将最后一个元素放到索引1处,并不断的拿着当前结点 a[k] 与它的子结点a[2k] 和 a[2k+1] 中的较大者交换位置,即可完成堆的有序调整。

三、堆排序

要求:给你一个数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。

实现步骤:

  • 构造堆
  • 得到堆顶元素,这个值就是最大值
  • 交换堆顶元素和数组中的最后一个元素,此时所有元素中的最大元素已经放到合适的位置
  • 对堆进行调整,重新让除了最后一个元素的剩余元素中的最大值放到堆顶
  • 重复2~4这个步骤,直到堆中剩一个元素为止

3.1 堆构造过程

堆的构造,最直观的想法就是另外再创建一个新数组,然后从左往右遍历原数组,每得到一个元素后,添加
到新数组中,并通过上浮,对堆进行调整,最后新的数组就是一个堆

上述的方式虽然很直观,也很简单,但是可以用更聪明一点的办法完成它

创建一个新数组,把原数组0 ~ length-1的数据拷贝到新数组的 1 ~ length 处,再从新数组 长度的一半 处开始往 1索引 处扫描(从右往左),然后对扫描到的每一个元素做下沉调整即可

为什么是新数组长度的一半?

因为新数组是一个无序堆,长度的一半之后的结点为叶子结点;叶子结点不需要要下沉调整

1.假设给定无序序列结构如下:
在这里插入图片描述
2.此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。

在这里插入图片描述
3.找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
在这里插入图片描述
4.这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

在这里插入图片描述

3.2 堆排序过程

对构造好的堆,只需要做 类似于堆的删除操作,就可以完成排序:

  1. 将堆顶元素和堆中最后一个元素交换位置
  2. 通过对堆顶元素下沉调整堆,把最大的元素放到堆顶 (此时最后一个元素不参与堆的调整,因为最大的数据已经到了数组的最右边)
  3. 重复1~2步骤,直到堆中剩最后一个元素

1.将堆顶元素9和末尾元素4进行交换
在这里插入图片描述

2.重新调整结构,使其继续满足堆定义
在这里插入图片描述

3.再将堆顶元素8与末尾元素5进行交换,得到第二大元素8
在这里插入图片描述
4.后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
在这里插入图片描述

3.3 总结堆排序的基本思路

1).将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端:
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤
直到整个序列有序。

至于完整的代码实现和动画显示,可以参考我的文章 - 排序算法基础

这篇关于数据结构:大顶堆、小顶堆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/663656

相关文章

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

浙大数据结构:树的定义与操作

四种遍历 #include<iostream>#include<queue>using namespace std;typedef struct treenode *BinTree;typedef BinTree position;typedef int ElementType;struct treenode{ElementType data;BinTree left;BinTre

Python 内置的一些数据结构

文章目录 1. 列表 (List)2. 元组 (Tuple)3. 字典 (Dictionary)4. 集合 (Set)5. 字符串 (String) Python 提供了几种内置的数据结构来存储和操作数据,每种都有其独特的特点和用途。下面是一些常用的数据结构及其简要说明: 1. 列表 (List) 列表是一种可变的有序集合,可以存放任意类型的数据。列表中的元素可以通过索

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo

【数据结构入门】排序算法之交换排序与归并排序

前言         在前一篇博客,我们学习了排序算法中的插入排序和选择排序,接下来我们将继续探索交换排序与归并排序,这两个排序都是重头戏,让我们接着往下看。  一、交换排序 1.1 冒泡排序 冒泡排序是一种简单的排序算法。 1.1.1 基本思想 它的基本思想是通过相邻元素的比较和交换,让较大的元素逐渐向右移动,从而将最大的元素移动到最右边。 动画演示: 1.1.2 具体步

数据结构:线性表的顺序存储

文章目录 🍊自我介绍🍊线性表的顺序存储介绍概述例子 🍊顺序表的存储类型设计设计思路类型设计 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾” 和“内容共创官” ,现在我来为大家介绍一下有关物联网-嵌入

[数据结构]队列之顺序队列的类模板实现

队列是一种限定存取位置的线性表,允许插入的一端叫做队尾(rear),允许删除的一端叫做队首(front)。 队列具有FIFO的性质 队列的存储表示也有两种方式:基于数组的,基于列表的。基于数组的叫做顺序队列,基于列表的叫做链式队列。 一下是基于动态数组的顺序队列的模板类的实现。 顺序队列的抽象基类如下所示:只提供了接口和显式的默认构造函数和析构函数,在派生类中调用。 #i