双目立体视觉中基于深度学习的Cost Volume浅析(difference方式)

本文主要是介绍双目立体视觉中基于深度学习的Cost Volume浅析(difference方式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于双目立体视觉方向的初学者来说,基于传统方法的Cost Volume构建比较容易懂,但是基于深度学习的Cost Volume构建却和传统方法构建大为不同,严重困扰“小白”的学习兴趣和进程。今天,我将用一个简单的例子,通俗易懂的介绍基于深度学习的Cost Volume浅析(以difference方式构建),仅供参考,如有差错,欢迎留言,以便勘误,共同进步。

双目立体视觉中基于深度学习的Cost Volume(difference方式)的参考代码如下:

'''
参考:https://zhuanlan.zhihu.com/p/293304108
'''
import torch
max_disp = 2# 1.提取特征图
left_feature = torch.ones(48).reshape(1,3,4,4)
right_feature = torch.zeros(48).reshape(1,3,4,4)
print("left_feature:", left_feature.shape)
print("right_feature:", right_feature.shape)
print("left_feature:\n", left_feature)
print("right_feature:\n", right_feature)
print("---------------------------------------------------------------")# 2.特征融合
class CostVolume():def __init__(self):pass'''feature_similarity:聚合方式left_feature:左特征图right_feature:右特征图'''def forward(self, feature_similarity, left_feature, right_feature):b, c, h, w = left_feature.size()self.max_disp = max_dispself.feature_similarity = feature_similaritycost_volume = left_feature.new_zeros(b, c, self.max_disp, h, w)print("original_cost_volume shape:", cost_volume.shape)print("original_cost_volume value:", cost_volume)for i in range(self.max_disp):if i > 0:print("********************************************************")print("left_feature[:, :, :, i:](i > 0 == i = 1):\n",    left_feature[:, :, :, i:])print("right_feature[:, :, :, :-i](i > 0 == i = 1)):\n", right_feature[:, :, :, :-i])cost_volume[:, :, i, :, i:] = left_feature[:, :, :, i:] - right_feature[:, :, :, :-i]print("cost_volume[:, :, i, :, i:](i > 0 == i = 1):\n", cost_volume[:, :, i, :, i:])print("final cost_volume:\n", cost_volume)else:cost_volume[:, :, i, :, :] = left_feature - right_feature  # i=0,表示左右两个特征图视差为0,没有差值,直接相减即可print("cost_volume[:, :, i, :, :] (i=0):\n", cost_volume)if __name__== "__main__" :cost_volume = CostVolume()cost_volume.forward("difference", left_feature, right_feature)

 (1)left_feature和right_feature的数据格式如下:

 (2)原始定义的cost volume数据格式如下:

 (3)当i=0时,cost volume数据格式如下:

 (4)当i>0时,cost volume数据格式如下:

  (5)最终的cost volume数据格式如下:

分析:对比最开始的cost volume、i=0的cost volume和最终的cost volume的区别:

在基于深度学习的双目立体视觉中,Cost Volume是一个5维数组([B,C,D,H,W]),其中B代表Batch size,C代表Channel,D代表深度Depth ,H代表特征图的高度Hight,W代表特征图的宽度Wight。暂时抛开Batch size B,那么Cost Volume就是一个4维数组([C,D,H,W]),可以表述为:在每个通道C中,每个视差D下,每个像素点的匹配代价值。
在以difference的方式进行双目匹配中。输入左右视图的特征图维度为B C H W。首先,对D(max disparity)维度进行遍历,cost volume(:, :, i, :, i:)可以理解为视差为i时,左右视图的相似度。

对于双目图像对来说,左右视图之间的存在视差,左右视图只有一部分是重合的,重合部分在左图的右边,右图的左边。因此在计算的时候,取左特征图的第i列到最后一列与右特征图的第一列到倒数第i列相减。cost volume(:,:,i,:,:)每个像素表示视差为i时,左图(x,y)像素与右图(x, y+i)像素的差异程度。输出的cost volume维度为B C D H W。

i=0,表示左右特征图中匹配点对齐,即直接left_feature和right_feature相减;

i>0,   表示左右特征图中匹配点没有对齐,这个时候就需要左右特征图错开,以视差为标准,进行左右特征图的错位相减。

cost_volume[:, :, i, :, i:] = left_feature[:, :, :, i:] - right_feature[:, :, :, :-i]

从代码中还可以看到,在计算cost volume之前,判断i为否为正数。i为正表示,左图在右图左边,右图在左图右边,只有这时才符合正常的双目视图的几何模型。

模型图如下所示:
​​​​​​​

参考文献:

[1] 计算机视觉中cost-volume的概念具体指什么? - 知乎

[2]双目深度算法——基于Cost Volume的方法(GC-Net / PSM-Net / GA-Net)_Leo-Peng的博客-CSDN博客_gc-net

[3]在计算机视觉(CV)领域,针对图像的cost volume模块是什么? - 知乎

[4]https://zhidao.baidu.com/question/1741015413026869187.html

[5]Cost volume的理解及其变体 - 知乎

这篇关于双目立体视觉中基于深度学习的Cost Volume浅析(difference方式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661542

相关文章

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

Flutter打包APK的几种方式小结

《Flutter打包APK的几种方式小结》Flutter打包不同于RN,Flutter可以在AndroidStudio里编写Flutter代码并最终打包为APK,本篇主要阐述涉及到的几种打包方式,通... 目录前言1. android原生打包APK方式2. Flutter通过原生工程打包方式3. Futte

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调