Python 数据分析实战——社交游戏的用户流失?酒卷隆治_案例2

本文主要是介绍Python 数据分析实战——社交游戏的用户流失?酒卷隆治_案例2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 什么样的顾客会选择离开

# 数据集

DAU : 每天至少来访问一次的用户数据

数据内容 数据类型 字段名

访问时间 string(字符串) log_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

USER_INFO:用户属性数据

数据内容 数据类型 字段名

首次使用日期 string(字符串) install_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

性别(女性、男性) string(字符串) gender

年龄段(10、20、30、40、50) int(数值) generation

设备类型(iOS、Android) string(字符串) device_type

# 加载模块
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文# 导入数据
DAU = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section4-dau.csv")
USER_INFO = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section4-user_info.csv")

# merge data 
data = pd.merge(DAU,USER_INFO,on='user_id',how='left')
data['log_mon'] = data.log_date.apply(lambda x: pd.to_datetime(x).strftime('%Y-%m'))
data.head(10)
# 数据分析
# 用户群分析(性别)
df_gender = pd.pivot_table(data,values='user_id',index = 'log_mon',columns='gender',aggfunc='count').reset_index()
df_gender['prop_f'] = df_gender['F']/(df_gender['F']+df_gender['M'])
df_gender['prop_m'] = df_gender['M']/(df_gender['F']+df_gender['M'])
df_gender

# 根据上述数据,可以发现9月份的整体数据下降,但是男女比例的构成几乎没有变。
# 由此可以判断性别属性对用户数量下降的影响很小。
# 用户群分析(年龄)
age_min = data['generation'].min()
age_max = data['generation'].max()
# print(age_min, age_max)
# 将年龄进行分组
data['age_group'] =pd.cut(data.generation,bins=[age_min-1,19,29,39,49,59],labels=['10~19','20~29','30~39','40~49','50~59']) df_age = pd.pivot_table(data,values='user_id',index = 'log_mon',columns='age_group',aggfunc='count').reset_index()
# print(df_age.columns)
# 计算不同age_group 占比
for i in df_age.columns:if i != 'log_mon':var = i+'_prop'df_age[var] = df_age[i]/(df_age['10~19']+df_age['20~29']+df_age['30~39']+df_age['40~49']+df_age['50~59'])df_age[['10~19_prop','20~29_prop','30~39_prop','40~49_prop','50~59_prop']]  

# 通过比较不同年龄段的占比,发现不同年龄群的用户在月总数据中的占比没有发生大的变化,说明年龄属性对用户的下降影响很小。
# 用户群分析(性别*年龄)
df_mix = pd.pivot_table(data,values='user_id',index = 'log_mon',columns=['gender','age_group'],aggfunc='count')
df_mix

# 通过将性别于年龄进行交叉组合,发现每个用户群所占的比例大体没变。
# 用户群分析(设备类型)
df_device = pd.pivot_table(data,values='user_id',index='log_mon',columns='device_type',aggfunc='count').reset_index()
df_device

# 发现IOS设备的用户数略有下降,而Android 的用户却大量减少。
# 再进一步的通过时间序列图确认用户数变化的程度from datetime import datetime
import matplotlib
from matplotlib import dates as mdates fig = plt.figure(figsize=(10,4))  # 设置画布大小
# 生成可视化数据
df = pd.pivot_table(data,values='user_id',index='log_date',columns='device_type',aggfunc='count').reset_index()
df['log_date'] = df.log_date.apply(lambda x:pd.to_datetime(x))# 画图
plt.plot(df.log_date, df.Android,marker='o',label='Android')
plt.plot(df.log_date,df.iOS,marker='*',label='iOS')plt.legend()
plt.title('不同类型设备的用户数变化')
# 设置坐标轴
plt.xticks(df.log_date , rotation=45) 
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%Y-%m-%d')) # 设置显示格式
plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=3)) # 日期间隔

 解决对策

# 从图可知,iOS设备的用户数和之前的大体相同,再一个区间内震荡。

# 但安卓用户数2013-09第二周开始急剧减少。经与开发部门确认,9月12号有一次设备升级,部分机型通过测试。在导出流失的用户机型数据后,发现系统版本存在问题,在修复系统后用户数据恢复正常。

这篇关于Python 数据分析实战——社交游戏的用户流失?酒卷隆治_案例2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/660058

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。