【NLP冲吖~】一、朴素贝叶斯(Naive Bayes)

2024-01-30 06:20
文章标签 贝叶斯 朴素 nlp naive bayes

本文主要是介绍【NLP冲吖~】一、朴素贝叶斯(Naive Bayes),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0、朴素贝叶斯法

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布,然后基于此模型,对给定的输入 x x x,利用贝叶斯定理求出后验概率最大的输出 y y y

朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。

从数学角度,定义分类问题如下:
已知集合 C = y 1 , y 2 , . . . , y n C = {y_1,y_2,...,y_n} C=y1,y2,...,yn I = x 1 , x 2 , . . . , x n I = {x_1,x_2,...,x_n} I=x1,x2,...,xn,确定一个函数映射 y = f ( x ) y = f(x) y=f(x),使得任意 x i ∈ I x_i∈I xiI有且仅有一个 y i ∈ C y_i∈C yiC,使得 y i ∈ f ( x i ) y_i∈f(x_i) yif(xi)成立。

其中, C C C叫做类别集合,其中每一个元素都是一个类别,而 I I I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f

1、贝叶斯公式

P ( B ∣ A ) = P ( A ∣ B ) P ( B ) / P ( A ) P(B|A) = P(A|B)P(B) / P(A) P(BA)=P(AB)P(B)/P(A)
我们将B看作类别,A看作特征。即:
P ( 类别 ∣ 特征 ) = P ( 特征 ∣ 类别 ) P ( 类别 ) / P ( 特征 ) P(类别|特征) = P(特征|类别)P(类别) / P(特征) P(类别特征)=P(特征类别)P(类别)/P(特征)
求得 P(类别|特征),我们就可以通过贝叶斯公式进行分类!

2、 贝叶斯公式的本质

贝叶斯公式主要是描述了两种条件概率之间的关系,即P(AIB)与P(BIA)的关系。
P(A) 指事件A的先验概率,即在没有任何条件的情况下吗,对事件的基本判断。
P(AIB) 指后验概率,是在条件B之下事件A发生的概率。
P(BIA)/P(B) 相当于一个调整因子,使得先验概率经过调整得到后验概率,当这部分等于1,说明事件B的加入对于判断A的可能性没有帮助,先验等于后验。当它大于1,说明A发生的概率由于B的加入增大了。

3、分类案例

已知数据:

长毛/短毛粘人/不粘人攻击性强/弱胆子大/小是否纯种是否好养
长毛粘人纯种不好养
短毛粘人纯种不好养
长毛不粘人纯种不好养
长毛粘人纯种不好养
长毛粘人非纯种不好养
短毛不粘人纯种好养
短毛粘人纯种好养
长毛不粘人非纯种好养
短毛粘人纯种好养
长毛粘人非纯种好养

根据已知数据,判断 短毛、粘人、攻击性弱、胆子大的非纯种猫是否好养。

P(好养|短毛、粘人、攻击性弱、胆子大、非纯种) = P(短毛、粘人、攻击性弱、胆子大、非纯种|好养)*P(好养) / P(短毛、粘人、攻击性弱、胆子大、非纯种)

P(短毛|好养) = 3 / 5
P(粘人|好养) = 3 / 5
P(攻击性弱|好养) = 4 / 5
P(胆子大|好养) = 3 / 5
P(非纯种|好养) = 2 / 5
P(好养) = 1 / 2
P(短毛) = 4 / 10 = 2 / 5
P(粘人) = 7 / 10
P(攻击性弱) = 5 / 10 = 1 / 2
P(胆子大) = 7 / 10
P(非纯种) = 3 / 10

同理:
P(短毛|不好养) = 1 / 5
P(粘人|不好养) = 4 / 5
P(攻击性弱|不好养) = 1 / 5
P(胆子大|不好养) = 4 / 5
P(非纯种|不好养) = 1 / 5
P(不好养) = 1 / 2
P(短毛) = 4 / 10 = 2 / 5
P(粘人) = 7 / 10
P(攻击性弱) = 5 / 10 = 1 / 2
P(胆子大) = 7 / 10
P(非纯种) = 3 / 10

可得:P(好养|短毛、粘人、攻击性弱、胆子大、非纯种) > P(不好养|短毛、粘人、攻击性弱、胆子大、非纯种)【只比较分子即可】

因此,可得 短毛、粘人、攻击性弱、胆子大的非纯种猫 好养。

4、 朴素贝叶斯为什么朴素?

其实朴素贝叶斯算法假设每个特征之间是相互独立的,这是算法的使用前提。朴素指的就是这一前提。

5、朴素贝叶斯分类算法的优缺点

优点:算法逻辑简单,易于实现;分类时,消耗时间空间资源少。

缺点:朴素贝叶斯算法的前提条件是特征相互独立,但是在实际情况中,特征之间往往不会那么理想,特征数较多或者特征之间相关性较大时,分类效果不会很好。

因此,**当特征之间的相关性较小是,我们可以忽略其相关性而使用朴素贝叶斯算法进行分类,分类效果会好很多。**当然,也有后续算法会对其改进。

6、 朴素贝叶斯在NLP中的应用

垃圾邮件分类:参考https://zhuanlan.zhihu.com/p/155632712
文本分类:参考https://blog.csdn.net/qiaowu898/article/details/107634195
。。。

这篇关于【NLP冲吖~】一、朴素贝叶斯(Naive Bayes)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659343

相关文章

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

【python 走进NLP】两两求相似度,得到一条文本和其他文本最大的相似度

应用场景: 一个数据框里面文本,两两求相似度,得到一条文本和其他文本最大的相似度。 content source_id0 丰华股份军阀割据发生的故事大概多少w 11 丰华股份军阀割据发生的故事大概多少 22 丰华股份军阀割据发生的故事大概多少 33 丰华股份军阀割据发生的故事大概多少

【Python 走进NLP】NLP词频统计和处理停用词,可视化

# coding=utf-8import requestsimport sysreload(sys)sys.setdefaultencoding('utf-8')from lxml import etreeimport timetime1=time.time()import bs4import nltkfrom bs4 import BeautifulSoupfrom

【java 走进NLP】simhash 算法计算两篇文章相似度

python 计算两篇文章的相似度算法simhash见: https://blog.csdn.net/u013421629/article/details/85052915 对长文本 是比较合适的(超过500字以上) 下面贴上java 版本实现: pom.xml 加入依赖 <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</a

【python 走进NLP】simhash 算法计算两篇文章相似度

互联网网页存在大量的重复内容网页,无论对于搜索引擎的网页去重和过滤、新闻小说等内容网站的内容反盗版和追踪,还是社交媒体等文本去重和聚类,都需要对网页或者文本进行去重和过滤。最简单的文本相似性计算方法可以利用空间向量模型,计算分词后的文本的特征向量的相似性,这种方法存在效率的严重弊端,无法针对海量的文本进行两两的相似性判断。模仿生物学指纹的特点,对每个文本构造一个指纹,来作为该文本的标识,从形式上来

【python 走进NLP】文本相似度各种距离计算

计算文本相似度有什么用? 1、反垃圾文本的捞取 “诚聘淘宝兼职”、“诚聘打字员”…这样的小广告满天飞,作为网站或者APP的运营者,不可能手动将所有的广告文本放入屏蔽名单里,挑几个典型广告文本,与它满足一定相似度就进行屏蔽。 2、推荐系统 在微博和各大BBS上,每一篇文章/帖子的下面都有一个推荐阅读,那就是根据一定算法计算出来的相似文章。 3、冗余过滤 我们每天接触过量的信息,信息之间存在大量

【python 走进NLP】句子相似度计算--余弦相似度

余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度将向量根据坐标值,绘制到向量空间中,如最常见的二维空间。 github 参考链接:https://github.com/ZhanPwBibiBibi/CHlikelihood # -*- coding: utf-8 -*-import jiebaimport numpy as npimpor

【python 走进NLP】从零开始搭建textCNN卷积神经网络模型

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证 目录 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现基于贝叶斯算法优化X