离线生成双语字幕基于AI大模型ModelScope

2024-01-29 19:12

本文主要是介绍离线生成双语字幕基于AI大模型ModelScope,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

制作双语字幕的方案网上有很多,林林总总,不一而足。制作双语字幕的原理也极其简单,无非就是人声背景音分离、语音转文字、文字翻译,最后就是字幕文件的合并,但美中不足之处这些环节中需要接口api的参与,比如翻译字幕,那么有没有一种彻底离线的解决方案?让普通人也能一键制作双语字幕,成就一个人的字幕组?

人声背景音分离

如果视频不存在嘈杂的背景音,那么大多数情况下是不需要做人声和背景音分离的,但考虑到背景音可能会影响语音转文字的准确率,那么人声和背景音分离还是非常必要的,关于人声抽离,我们首先想到的解决方案当然是spleeter,但其实,阿里通义实验室开源的大模型完全不逊色于spleeter,它就是FRCRN语音降噪-单麦-16k,模型官方地址:

https://modelscope.cn/models/iic/speech_frcrn_ans_cirm_16k/summary

FRCRN语音降噪模型是基于频率循环 CRN (FRCRN) 新框架开发出来的。该框架是在卷积编-解码(Convolutional Encoder-Decoder)架构的基础上,通过进一步增加循环层获得的卷积循环编-解码(Convolutional Recurrent Encoder-Decoder)新型架构,可以明显改善卷积核的视野局限性,提升降噪模型对频率维度的特征表达,尤其是在频率长距离相关性表达上获得提升,可以在消除噪声的同时,对语音进行更针对性的辨识和保护。

需要注意的是该模型再Pytorch1.12上有bug,所以最好指定版本运行:

pip install pytorch==1.11 torchaudio torchvision -c pytorch

运行方式也很简单,通过pipeline调用即可:

from modelscope.pipelines import pipeline  
from modelscope.utils.constant import Tasks  ans = pipeline(  Tasks.acoustic_noise_suppression,  model='damo/speech_frcrn_ans_cirm_16k')  
result = ans(  'test.wav',  output_path='output.wav')

语音转文字 faster-whisper

成功分离出人声,接着要做的就是语音转文字,这里选择faster-whisper,faster-whisper 是 OpenAI Whisper 模型的重新实现,使用了 CTranslate2,这是一个用于 Transformer 模型的快速推理引擎。相比于 openai/whisper,faster-whisper 的实现速度提高了 4 倍,同时内存占用更少。此外,faster-whisper 还支持在 CPU 和 GPU 上进行 8 位量化,进一步提高了效率。

pip install faster-whisper

随后编写转写代码:

def convert_seconds_to_hms(seconds):  hours, remainder = divmod(seconds, 3600)  minutes, seconds = divmod(remainder, 60)  milliseconds = math.floor((seconds % 1) * 1000)  output = f"{int(hours):02}:{int(minutes):02}:{int(seconds):02},{milliseconds:03}"  return output  # 制作字幕文件  
def make_srt(file_path,model_name="small"):  device = "cuda" if torch.cuda.is_available() else "cpu"  if device == "cuda":  model = WhisperModel(model_name, device="cuda", compute_type="float16",download_root="./model_from_whisper",local_files_only=False)  else:  model = WhisperModel(model_name, device="cpu", compute_type="int8",download_root="./model_from_whisper",local_files_only=False)  # or run on GPU with INT8  # model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")  segments, info = model.transcribe(file_path, beam_size=5)  print("Detected language '%s' with probability %f" % (info.language, info.language_probability))  count = 0  with open('./video.srt', 'w') as f:  # Open file for writing  for segment in segments:  count +=1  duration = f"{convert_seconds_to_hms(segment.start)} --> {convert_seconds_to_hms(segment.end)}\n"  text = f"{segment.text.lstrip()}\n\n"  f.write(f"{count}\n{duration}{text}")  # Write formatted string to the file  print(f"{duration}{text}",end='')  with open("./video.srt", 'r',encoding="utf-8") as file:  srt_data = file.read()  return "转写完毕"

这里通过convert_seconds_to_hms方法来把时间戳格式化为标准字幕时间轴。

大模型翻译字幕

这里字幕翻译我们依然使用大模型,依然是阿里通义实验室的CSANMT连续语义增强机器翻译-英中-通用领域-large,模型官方地址:

https://modelscope.cn/models/iic/nlp_csanmt_translation_en2zh/summary

该模型基于连续语义增强的神经机器翻译模型,由编码器、解码器以及语义编码器三者构成。其中,语义编码器以大规模多语言预训练模型为基底,结合自适应对比学习,构建跨语言连续语义表征空间。此外,设计混合高斯循环采样策略,融合拒绝采样机制和马尔可夫链,提升采样效率的同时兼顾自然语言句子在离散空间中固有的分布特性。最后,结合邻域风险最小化策略优化翻译模型,能够有效提升数据的利用效率,显著改善模型的泛化能力和鲁棒性。

依然是通过pipeline进行调用:

# 翻译字幕  
def make_tran():  pipeline_ins = pipeline(task=Tasks.translation, model=model_dir_ins)  with open("./video.srt", 'r',encoding="utf-8") as file:  gweight_data = file.read()  result = gweight_data.split("\n\n")  if os.path.exists("./two.srt"):  os.remove("./two.srt")  for res in result:  line_srt = res.split("\n")  try:  outputs = pipeline_ins(input=line_srt[2])  except Exception as e:  print(str(e))  break  print(outputs['translation'])  with open("./two.srt","a",encoding="utf-8")as f:f.write(f"{line_srt[0]}\n{line_srt[1]}\n{line_srt[2]}\n{outputs['translation']}\n\n")  return "翻译完毕"

合并字幕

虽然字幕已经完全可以导入剪辑软件进行使用了,但是依然可以通过技术手段来自动化合并字幕,这里使用ffmpeg:

# 合并字幕  
def merge_sub(video_path,srt_path):  if os.path.exists("./test_srt.mp4"):  os.remove("./test_srt.mp4")  ffmpeg.input(video_path).output("./test_srt.mp4", vf="subtitles=" + srt_path).run()  return "./test_srt.mp4"

这篇关于离线生成双语字幕基于AI大模型ModelScope的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657908

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,