基于coco数据集的人体关键点分布示意图与数据集解析

2024-01-29 13:30

本文主要是介绍基于coco数据集的人体关键点分布示意图与数据集解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文绘制了coco中人体姿态关键点的分布示意图,并解释了每个关键点的含义。

目录

1、数据集介绍

2、示意图

3、数据集解析


1、数据集介绍

        有pose标注的部分数据样式如下:

        每张图中有若干个segment标注,每个标注包含的信息如下:


{"segmentation":[[0.43,299.58,2.25,299.58,9.05,287.78,32.66,299.13,39.01,296.4,48.09,290.96,43.55,286.87,62.16,291.86,61.25,286.87,37.65,279.15,18.13,272.8,0,262.81]],
"num_keypoints":1,
"area":1037.7819,
"iscrowd":0,
"keypoints":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,277,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
"image_id":397133,
"bbox":[0,262.81,62.16,36.77],
"category_id":1,
"id":1218137}

        我们所需要的就是其中的'keypoints'部分,每三个数字为一组,代表一个关键点,三个值分别为x坐标、y坐标、标志位,其中,标志位有三个值:

  • 0:未标注
  • 1:标注,但被遮挡
  • 2:标注,未遮挡

2、示意图

        下图中,共17个关节点(鼻子x1、眼睛x2、耳朵x2、肩部x2、肘部x2、手腕x2、髋部x2、膝关节x2、脚腕x2):

3、数据集解析

        我们从coco2017中解析数据集并保存为YOLO格式,这种格式可以直接用YOLOv5或者YOLOv8进行训练:


"""
get person instance segmentation annotations from coco data set.
"""import argparse
import osimport numpy as np
import tqdm
import shutil
from pycocotools.coco import COCOdef main(args):annotation_file = os.path.join(args.input_dir, 'annotations', 'person_keypoints_{}.json'.format(args.split))# init pathsubdir = args.split[:-4] + '_coco2'img_save_dir = os.path.join(args.output_dir, subdir, 'images')txt_save_dir = os.path.join(args.output_dir, subdir, 'labels')os.makedirs(img_save_dir, exist_ok=True)os.makedirs(txt_save_dir, exist_ok=True)coco = COCO(annotation_file)catIds = coco.getCatIds()imgIds = coco.getImgIds()print("catIds len:{}, imgIds len:{}".format(len(catIds), len(imgIds)))for imgId in tqdm.tqdm(imgIds, ncols=100):img = coco.loadImgs(imgId)[0]annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)anns = coco.loadAnns(annIds)if len(annIds) > 0:img_origin_path = os.path.join(args.input_dir, args.split, img['file_name'])img_height, img_width = img['height'], img['width']lines = []for ann in anns:# if ann['iscrowd'] != 0 or ann['category_id'] != 1:#     continuebbox = np.asarray(ann['bbox'], dtype=float)  # x1y1whbbox[::2] = bbox[::2] / img_widthbbox[1::2] = bbox[1::2] / img_height# x1y1wh2xywhbbox[0] += bbox[2] / 2bbox[1] += bbox[3] / 2bbox_str = [str(b) for b in bbox]keypoints = np.asarray(ann['keypoints'], dtype=float)keypoints[::3] = keypoints[::3] / img_widthkeypoints[1::3] = keypoints[1::3] / img_heightkeypoints_str = [str(k) for k in keypoints]line = '{} {} {}'.format(0, ' '.join(bbox_str), ' '.join(keypoints_str))lines.append(line)if len(lines) > 0:txt_output_path = os.path.join(txt_save_dir, os.path.splitext(img['file_name'])[0] + '.txt')with open(txt_output_path, 'a') as f:for line in lines:f.write(line + '\n')img_output_path = os.path.join(img_save_dir, img['file_name'])shutil.copy(img_origin_path, img_output_path)def get_args():parser = argparse.ArgumentParser()parser.add_argument("--input_dir", default="/data/public_datasets/coco2017", type=str,help="input dataset directory")parser.add_argument("--split", default="val2017", type=str,help="train2017 or val2017")parser.add_argument("--output_dir", default="/data/datasets/person_pose", type=str,help="output dataset directory")return parser.parse_args()if __name__ == '__main__':args = get_args()main(args)

参考:

COCO - Common Objects in Context

这篇关于基于coco数据集的人体关键点分布示意图与数据集解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657058

相关文章

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编