MATLAB - 仿真单摆的周期性摆动

2024-01-29 09:12

本文主要是介绍MATLAB - 仿真单摆的周期性摆动,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


前言

本例演示如何使用 Symbolic Math Toolbox™ 模拟单摆的运动。推导摆的运动方程,然后对小角度进行分析求解,对任意角度进行数值求解。


一、步骤 1:推导运动方程

摆是一个遵循微分方程的简单机械系统。摆最初静止在垂直位置。当摆移动一个角度 θ 并释放时,重力将其拉回静止位置。它的动量会使它过冲并到达 -θ 角(如果没有摩擦力),以此类推。由于重力的作用,钟摆运动的恢复力为 -mgsinθ。因此,根据牛顿第二定律,质量乘以加速度必须等于 -mgsinθ。

syms m a g theta(t)
eqn = m*a == -m*g*sin(theta)
eqn(t) = a m=−g m sin(θ(t))

对于长度为 r 的摆锤,摆锤的加速度等于角加速度乘以 r。

a=r\frac{d^2\theta}{dt^2}.

用子项代替 a。 

syms r
eqn = subs(eqn,a,r*diff(theta,2))

 \begin{aligned}eqn(t)&=\\mr\frac{\partial^2}{\partial t^2}&\theta(t)=-gm\sin(\theta(t))\end{aligned}

使用 isolate 隔离公式中的角加速度。

eqn = isolate(eqn,diff(theta,2))

\begin{aligned}\text{eqn =} \frac{\partial^2}{\partial t^2}\left.\theta(t)=-\frac{g\sin(\theta(t))}r\right.\end{aligned}

将常数 g 和 r 合并为一个参数,也称为固有频率。

\omega_0=\sqrt{\dfrac{g}{r}}.

syms omega_0
eqn = subs(eqn,g/r,omega_0^2)

\begin{aligned}\text{eqn =}\frac{\partial^2}{\partial t^2}\theta(t)=-\omega_0^2\sin(\theta(t))\end{aligned}

二、步骤 2:运动方程线性化

运动方程是非线性的,因此难以用解析法求解。假设角度很小,利用 sinθ 的泰勒展开式将方程线性化。 

syms x
approx = taylor(sin(x),x,'Order',2);
approx = subs(approx,x,theta(t))

approx = \theta(t)

运动方程变成了线性方程。

eqnLinear = subs(eqn,sin(theta(t)),approx)

\begin{aligned}\text{eqnLinear}&=\\\frac{\partial^2}{\partial t^2}\theta(t)&=-\omega_0^2\theta(t)\end{aligned}

三、步骤 3:分析求解运动方程

使用 dsolve 求解方程 eqnLinear。将初始条件指定为第二个参数。使用 assume 假设 ω0 为实数,简化解法。

syms theta_0 theta_t0
theta_t = diff(theta);
cond = [theta(0) == theta_0, theta_t(0) == theta_t0];
assume(omega_0,'real')
thetaSol(t) = dsolve(eqnLinear,cond)

\begin{aligned}\text{thetasol(t)}&=\theta_0\cos(\omega_0t)+\frac{\theta_{t0}\sin(\omega_0t)}{\omega_0}\end{aligned}

四、步骤 4:ω0 的物理意义

项 ω 0 t 称为相位。余弦函数和正弦函数每 2π 重复一次。改变 ω 0 t 变化 2π 所需的时间称为时间周期。

T=\dfrac{2\pi}{\omega0}=2\pi\sqrt{\dfrac{r}{g}}.

时间周期 T 与摆长的平方根成正比,与质量无关。对于线性运动方程,时间周期与初始条件无关。

五、步骤 5:绘制摆的运动图

绘制小角度近似的摆运动图。

定义物理参数:

  • 重力加速度 g=9.81\mathrm{m/s}^{2}
  • 摆长 \text{r=1 m}

 

gValue = 9.81;
rValue = 1;
omega_0Value = sqrt(gValue/rValue);
T = 2*pi/omega_0Value;

设置初始条件。

theta_0Value  = 0.1*pi; % Solution only valid for small angles.
theta_t0Value = 0;      % Initially at rest.

 将物理参数和初始条件代入一般解法。

vars   = [omega_0      theta_0      theta_t0];
values = [omega_0Value theta_0Value theta_t0Value];
thetaSolPlot = subs(thetaSol,vars,values);

 绘制谐摆运动图。

fplot(thetaSolPlot(t*T)/pi, [0 5]);
grid on;
title('Harmonic Pendulum Motion');
xlabel('t/T');
ylabel('\theta/\pi');

求出 θ(t) 的解后,想象一下摆的运动。 

x_pos = sin(thetaSolPlot);
y_pos = -cos(thetaSolPlot);
fanimator(@fplot,x_pos,y_pos,'ko','MarkerFaceColor','k','AnimationRange',[0 5*T]);
hold on;
fanimator(@(t) plot([0 x_pos(t)],[0 y_pos(t)],'k-'),'AnimationRange',[0 5*T]);
fanimator(@(t) text(-0.3,0.3,"Timer: "+num2str(t,2)+" s"),'AnimationRange',[0 5*T]);

输入 playAnimation 命令播放钟摆运动的动画。 

六、步骤 6:使用恒定能量路径确定非线性摆运动

为了理解摆的非线性运动,请使用总能量方程来直观显示摆的运动轨迹。总能量是守恒的。

E=\dfrac12mr^2{\left(\dfrac{d\theta}{dt}\right)}^2+mgr(1-\cos\theta) 

使用三角函数特性 1-\cos\theta=2\sin^2(\theta/2) 和关系式 \omega_0=\sqrt{g/r} 重写比例能量。

\dfrac E{mr^2}=\dfrac12\left[\left(\dfrac{d\theta}{dt}\right)^2+\left(2\omega_0\sin\dfrac\theta2\right)^2\right] 

由于能量守恒,摆的运动可以用相空间中的恒定能量路径来描述。相空间是一个抽象空间,坐标为 θ 和 dθ/dt。使用 fcontour 将这些路径可视化。

syms theta theta_t omega_0
E(theta, theta_t, omega_0) = (1/2)*(theta_t^2+(2*omega_0*sin(theta/2))^2);
Eplot(theta, theta_t) = subs(E,omega_0,omega_0Value);figure;
fc = fcontour(Eplot(pi*theta, 2*omega_0Value*theta_t), 2*[-1 1 -1 1], ...'LineWidth', 2, 'LevelList', 0:5:50, 'MeshDensity', 1+2^8);
grid on;
title('Constant Energy Contours in Phase Space ( \theta vs. \theta_t )');
xlabel('\theta/\pi');
ylabel('\theta_t/2\omega_0');

恒定能量等值线围绕 θ 轴和 dθ/dt 轴对称,沿 θ 轴呈周期性分布。图中显示了两个行为截然不同的区域。

等值线图的较低能量相互靠近。摆锤在两个最大角度和速度之间来回摆动。摆锤的动能不足以克服重力能,使摆锤绕一圈。

等值线图中的高能量不会自行闭合。摆锤始终沿着一个角度方向运动。钟摆的动能足以克服重力能,使钟摆能够绕一圈。 

七、步骤 7:求解非线性运动方程

非线性运动方程是二阶微分方程。使用 ode45 求解器对这些方程进行数值求解。由于 ode45 只接受一阶系统,因此请将系统简化为一阶系统。然后生成函数句柄,作为 ode45 的输入。

将二阶 ODE 重写为一阶 ODE 系统。

syms theta(t) theta_t(t) omega_0
eqs = [diff(theta)   == theta_t;diff(theta_t) == -omega_0^2*sin(theta)]

 \left.\text{eqs}(t)=\\\left(\begin{aligned}\frac{\partial}{\partial t}&\theta(t)=\theta_t(t)\\\\\frac{\partial}{\partial t}&\theta_t(t)=-\omega_0^2\sin(\theta(t))\end{aligned}\right.\right)

eqs  = subs(eqs,omega_0,omega_0Value);
vars = [theta, theta_t];

 求出系统的质量矩阵 M 和方程 F 的右边。

[M,F] = massMatrixForm(eqs,vars)

 \begin{array}{rcl}\text{M}&=&\\&&\begin{bmatrix}1&0\\0&1\end{bmatrix}\end{array}

\begin{aligned}{F}&=\\&\begin{bmatrix}\theta_t(t)\\-\dfrac{981\sin(\theta(t))}{100}\end{bmatrix}\end{aligned}

M 和 F 指的就是这种形式。

M(t,x(t))\dfrac{dx}{dt}=F(t,x(t)). 

为简化进一步计算,可将系统改写为 dx/dt=f(t,x(t)). 的形式。

f = M\F

 \begin{aligned}\text{f}&=\\&\begin{bmatrix}\theta_t(t)\\-\dfrac{981\sin(\theta(t))}{100}\end{bmatrix}\end{aligned}

使用 odeFunction 将 f 转换为 MATLAB 函数句柄。生成的函数句柄是 MATLAB ODE 求解器 ode45 的输入。 

f = odeFunction(f, vars)
f = function_handle with value:@(t,in2)[in2(2,:);sin(in2(1,:)).*(-9.81e+2./1.0e+2)]

八、步骤 8:求解封闭能量等值线的运动方程

使用 ode45 求解封闭能量等值线的 ODE。

从能量等值线图来看,封闭等值线满足条件 \theta_0=0,\theta_{t0}/2\omega_0\leq1. 将 θ 和 dθ/dt 的初始条件存储在变量 x0 中。

x0 = [0; 1.99*omega_0Value];

指定一个从 0 秒到 10 秒的时间间隔,用于求解。这个时间间隔允许摆锤经历两个完整的周期。

tInit  = 0;
tFinal = 10;

求解 ODE。

sols = ode45(f,[tInit tFinal],x0)
sols = struct with fields:solver: 'ode45'extdata: [1x1 struct]x: [0 3.2241e-05 1.9344e-04 9.9946e-04 0.0050 0.0252 0.1259 0.3449 0.6020 0.8591 1.1161 1.3597 1.5996 1.8995 2.2274 2.4651 2.7028 2.9567 3.2138 3.4709 3.7150 3.9511 4.2483 4.5759 4.8239 5.0719 5.3182 5.5764 5.8346 6.0803 ... ] (1x45 double)y: [2x45 double]stats: [1x1 struct]idata: [1x1 struct]

sols.y(1,:) 表示角位移 θ,sols.y(2,:) 表示角速度 dθ/dt。

绘制闭合路径解。

figure;yyaxis left;
plot(sols.x, sols.y(1,:), '-o');
ylabel('\theta (rad)');yyaxis right;
plot(sols.x, sols.y(2,:), '-o');
ylabel('\theta_t (rad/s)');grid on;
title('Closed Path in Phase Space');
xlabel('t (s)');

可视化钟摆的运动。 

x_pos = @(t) sin(deval(sols,t,1));
y_pos = @(t) -cos(deval(sols,t,1));
figure;
fanimator(@(t) plot(x_pos(t),y_pos(t),'ko','MarkerFaceColor','k'));
hold on;
fanimator(@(t) plot([0 x_pos(t)],[0 y_pos(t)],'k-'));
fanimator(@(t) text(-0.3,1.5,"Timer: "+num2str(t,2)+" s"));

输入 playAnimation 命令播放钟摆运动的动画。 

九、步骤 9:开放式能量等值线的求解

使用 ode45 求解开放式能量等值线的 ODE。从能量等值线图来看,开放式等值线满足条件 \theta_0=0\text{,}\theta_{t0}/2\omega_0>1.

x0 = [0; 2.01*omega_0Value];
sols = ode45(f, [tInit, tFinal], x0);

绘制开放式能量等值线的解。

figure;yyaxis left;
plot(sols.x, sols.y(1,:), '-o');
ylabel('\theta (rad)');yyaxis right;
plot(sols.x, sols.y(2,:), '-o');
ylabel('\theta_t (rad/s)');grid on;
title('Open Path in Phase Space');
xlabel('t (s)');

可视化钟摆的运动。 

x_pos = @(t) sin(deval(sols,t,1));
y_pos = @(t) -cos(deval(sols,t,1));
figure;
fanimator(@(t) plot(x_pos(t),y_pos(t),'ko','MarkerFaceColor','k'));
hold on;
fanimator(@(t) plot([0 x_pos(t)],[0 y_pos(t)],'k-'));
fanimator(@(t) text(-0.3,1.5,"Timer: "+num2str(t,2)+" s"));

输入 playAnimation 命令播放钟摆运动的动画。 

这篇关于MATLAB - 仿真单摆的周期性摆动的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656423

相关文章

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

C# double[] 和Matlab数组MWArray[]转换

C# double[] 转换成MWArray[], 直接赋值就行             MWNumericArray[] ma = new MWNumericArray[4];             double[] dT = new double[] { 0 };             double[] dT1 = new double[] { 0,2 };

perl的学习记录——仿真regression

1 记录的背景 之前只知道有这个强大语言的存在,但一直侥幸自己应该不会用到它,所以一直没有开始学习。然而人生这么长,怎就确定自己不会用到呢? 这次要搭建一个可以自动跑完所有case并且打印每个case的pass信息到指定的文件中。从而减轻手动跑仿真,手动查看log信息的重复无效低质量的操作。下面简单记录下自己的思路并贴出自己的代码,方便自己以后使用和修正。 2 思路整理 作为一个IC d

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑燃料电池和电解槽虚拟惯量支撑的电力系统优化调度方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python

libsvm在matlab中的使用方法

原文地址:libsvm在matlab中的使用方法 作者: lwenqu_8lbsk 前段时间,gyp326曾在论坛里问libsvm如何在matlab中使用,我还奇怪,认为libsvm是C的程序,应该不能。没想到今天又有人问道,难道matlab真的能运行libsvm。我到官方网站看了下,原来,真的提供了matlab的使用接口。 接口下载在: http://www.csie.ntu.edu.

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数_matlab pmsm-CSDN博客

MATLAB层次聚类分析法

转自:http://blog.163.com/lxg_1123@126/blog/static/74841406201022774051963/ 层次聚类是基于距离的聚类方法,MATLAB中通过pdist、linkage、dendrogram、cluster等函数来完成。层次聚类的过程可以分这么几步: (1) 确定对象(实际上就是数据集中的每个数据点)之间的相似性,实际上就是定义一个表征

MATLAB的fix(),floor()和ceil()函数的区别与联系

fix(x),floor(x)和ceil(x)函数都是对x取整,只不过取整方向不同而已。 这里的方向是以x轴作为横坐标来看的,向右就是朝着正轴方向,向左就是朝着负轴方向。 fix(x):向0取整(也可以理解为向中间取整) floor(x):向左取整 ceil(x):向右取整 举例: 4个数:a=3.3、b=3.7、c=-3.3、d=-3.7 fix(a)=3 fl