【进阶实战】用PaddlePaddle实现LSTM股票预测

2024-01-29 00:30

本文主要是介绍【进阶实战】用PaddlePaddle实现LSTM股票预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Paddlepaddle实现LSTM - 股票预测

欢迎大家来到这个实验,本实验实现的是利用LSTM (长短期记忆神经网络) 进行股票预测,通过本次实验,你将了解股票预测的方法、股票预测的数据集处理技巧、LSTM模型搭建以及训练过程等等,除此之外,你还将看到Paddlepaddle框架实现深度学习的一个十分清晰的结构流程,加深你对Paddlepaddle的了解。

在开始实验之前,我们有必要先来了解一下股票预测的一些知识,以便对股票预测实验有一个整体把握。

背景知识

我们之前做过关于房价预测的实验,房价预测就是根据影响房价的一些因素(面积,地理位置等等)来构建一个全连接层神经网络并对其函数参数进行训练,最后使得损失函数收敛,这样一来我们就可以得到确切的函数关系式,每给一个输入,便得到一个相应的房价输出,每次的房价输出仅仅与本次的输入有关,而与之前的输入输出没有关系,即房价的数据不构成时间序列。

股票预测虽然同样是预测类的实验,但却与房价预测有很大的不同,因为我们无法只根据一天的股票数据就能对后面的股票进行预测,换句话说,股票价格不仅仅与前面一天的数据有关系,还跟以前的股票价格有关系,这样,股票的数据就构成了一种时间序列,而每次决定股票预测结果的也不是仅仅是本次的输入,而是过去一段时间的数据序列,所以我们不能像预测房价那样使用全连接层神经网络,而是使用LSTM模型。

下面是LSTM模型的一个原理简图: 

如上图所示,右图是左图的展开图,可以看出,此模型某一个时刻的输出ht不仅仅取决于当前的输入Xt,还跟上一个隐藏层的值有关系,这就意味着此模型具有一定的 “记忆力” ,而这正好符合股票预测的要求,所以在本次实验中,我们选择的是此模型,关于LSTM模型更详细的介绍,可以点此博客http://blog.csdn.net/fengkuangsake/article/details/51658489

简单了解了股票预测的原理后,我们就可以正式开始实验了。

本次实验分流程如下:

  1. 引用库的导入
  2. 数据预处理
  3. 构造数据读取的Reader
  4. 搭建模型
  5. 训练模型
  6. 预测及可视化
  7. 总结

1 - 引用库

首先,我们需要加载实验需要用到的一些库,他们分别是:

  • numpy:一个python的基本库,用于科学计算
  • matplotlib.pyplot:用于生成比特币预测效果图
  • paddle.fluid :PaddlePaddle深度学习框架
  • from future import print_function:在开头加上from future import print_function这句之后,即使在python2.X,使用print就得像 python3.X那样加括号使用.

In[7]

import numpy as np
import math
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid 
from __future__ import print_function

2 - 数据预处理

本次实验采用的是上证指数的股票,数据集包含10列 (股票来源、日期、开盘价、收盘价、最低价、最高价、交易量、交易额、跌涨幅、后一天最高价) ,共有6109天的股票数据

在本实验中,我们利用历史数据中的开盘价、收盘价、最低价、最高价、交易量、交易额、跌涨幅来对下一日的最高价进行预测,第一列的数据在股票来源确定以后默认预测的是此支股票,第一行的数据完全一样,所以第一列数据在本实验中不参与训练。此外,由于我们处理股票数据时就是按照时间序列来进行处理的,所以第二列的日期数据也不会参与训练。

数据处理第一步,我们首先需要对文件中我们不需要的数据进行删除,在本实验中,我们可以直接在原数据集文件中删除前两列和第一行,然后保存文件为新的数据集stock_dataset.txt。然后我们需要读取剩下的数据:

In[4]

# 解压数据集
!unzip -qo -d data data/data3580/stock_LSTM_fluid.zip

In[5]

SAVE_DIRNAME = 'model'
f = open('data/stock_LSTM_fluid/datasets/stock_dataset.txt') 
df = f.readlines()    
f.close()

下面的代码把数据整理成我们需要的数组形式并保存在data中,形状为6109×8

In[8]

data = []
for line in df:data_raw = line.strip('\n').strip('\r').split('\t') #这里data_raw是列表形式,代表一行数据样本data.append(data_raw)#data为二维列表形式
data = np.array(data, dtype='float32')

在数据整理完成以后,我们可以查看一下数据信息,例如数据的类型、数据的个数、形状等等。

In[10]

print('数据类型:',type(data))
print('数据个数:', data.shape[0])
print('数据形状:', data.shape)
print('数据第一行:', data[0])
数据类型: <type 'numpy.ndarray'>
数据个数: 6109
数据形状: (6109, 8)
数据第一行: [1.0430000e+02 1.0439000e+02 9.9980003e+01 1.0439000e+02 1.9700000e+05

这篇关于【进阶实战】用PaddlePaddle实现LSTM股票预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/655240

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount