阿里巴巴优酷视频增强和超分辨率挑战的冠军方案:VESR-Net

本文主要是介绍阿里巴巴优酷视频增强和超分辨率挑战的冠军方案:VESR-Net,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
作者单位:中国科学技术大学、微软亚洲研究院
挑战赛链接:https://tianchi.aliyun.com/competition/entrance/231711/rankingList/1
论文链接:https://arxiv.org/pdf/2003.02115.pdf
译者:Wangsy

看点

视频增强与超分辨率(VESR)旨在从噪声和低分辨率视频帧中恢复高分辨率的细节。为了推动研究从受现实世界退化影响的低质量视频中恢复高质量视频,优酷举办了视频增强和超分辨率挑战赛,以探索在线视频应用程序中真实退化的数据集的VESR解决方案。
本文介绍了VESR-Net,它在优酷VESR挑战赛中获得第一名。具体的说:

  1. 设计了一个独立的非局部(Separate NL)模块来有效地探索视频帧之间的关系并对视频帧进行融合;
  2. 设计了一个通道注意残差块(CARB),用于在VESR网络中捕获视频帧重构的特征映射之间的关系。
    在这里插入图片描述

Youku-VESR挑战

挑战赛了收集1000个1080p视频片段,包括高分辨率和低分辨率视频对。该数据集包含了多种类型的内容,在在线视频观看应用中,低分辨率视频会受到不同噪声的影响。
挑战阶段:第一阶段,所有参与者得到200对LR和HR视频用于训练,50对LR视频用于评估。第二阶段,Youku发布650对LR和HR视频用于培训,100对LR视频用于验证。第二阶段的LR视频比第一阶段的视频退化更严重。在本文所提及的方法中,对于一共1000个视频片段,分割了50个视频用于评估,剩下的视频用于训练。
评估阶段:评估阶段定量指标是峰值信噪比(PSNR)和视频多方法评估融合(VMAF)。测试为前5个视频中的所有帧和剩下视频中的每隔5帧的下一帧。

方法

overview

VESR-Net由两部分组成:帧间融合的融合模块和帧内融合的重构模块。融合模块的目标是通过从相邻帧中提取有用信息,同时忽略时间冗余信息来融合相邻帧进行中间帧重建。因此,本文提出了一个独立的非局部模块来模拟视频特征之间的关系。在帧重建模块中,我们在残差块中引入了通道注意机制,以实现高效重建。
在这里插入图片描述
每个模块的具体网络架构如下表:
在这里插入图片描述

独立的非局部模块

在计算机视觉中的自注意机制称为非局部神经网络。然而,由于非局部神经网络中关系矩阵的高维性,非局部运算消耗了大量的参数,尤其是对于视频特征。因此,本文设计了一种新的称为独立非本地的模块,在较浅的网络中可以达到更好的性能。本文设计了三种类型的注意模块,以探索不同维度的全局上下文信息。首先,在三个分支中分别生成两个新的特征映射A1、A2、A3和B1、B2、B3。然后将它们reshape到C×T×(N×W)、T×H×W×C、C×H×W×T,通过矩阵乘法得到三个关系矩阵 M 1 ∈ R H W × H W 、 M 2 ∈ R C × C 、 M 3 ∈ R T × T M1∈\mathbb R^{HW×HW}、M2∈\mathbb R^{C×C}、M3∈\mathbb R^{T×T} M1RHW×HWM2RC×CM3RT×T。M1、M2和M3分别表示不同空间上下文、不同通道和不同时间步长之间的相似性。同时,我们将视频特征F输入到三个卷积层中,生成新的与B在同一空间中的特征映射D1、D2、D3。接下来,对D1,D2,D3的转置与M1,M2,M3进行矩阵乘法,得到结果E1,E2,E3。最后,我们在E1,E2,E3和F之间进行元素和运算,得到融合特征。
在这里插入图片描述

通道注意残差块

重建模块中残差块中的通道注意机制是VESR高效重构和良好性能的基础。在CARB中,首先执行全局平均池化获取通道描述W。然后通过两个线性层得到通道权值Z,并将通道权值Z与视频特征X相乘,最后将相乘的结果与视频特征进行concat,输入进1×1卷积层得到最终输出。
在这里插入图片描述

实验

消融实验

对提出的独立非局部模块和通道注意残差块进行消融实验,并与EDVR s m a l l _{small} small进行对比。(此处没有给两个模块都没有的实验数据,如果两个模块都没有就比EDVR性能好,该论文就没有很大的意义了,不如去讲讲没有这两个模块为什么还会比EDVR性能好)
在这里插入图片描述

量化评估

为了公平比较,EDVR s m a l l _{small} small作为baseline采用了20个残差块,其参数数量与VESR-Net s m a l l _{small} small相当。在设计的独立非局部模块和通道注意残差块的帮助下,VESR-Net比EDVR网提高了0.22dB,并且计算复杂度较低。
在这里插入图片描述

这篇关于阿里巴巴优酷视频增强和超分辨率挑战的冠军方案:VESR-Net的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654117

相关文章

Java如何获取视频文件的视频时长

《Java如何获取视频文件的视频时长》文章介绍了如何使用Java获取视频文件的视频时长,包括导入maven依赖和代码案例,同时,也讨论了在运行过程中遇到的SLF4J加载问题,并给出了解决方案... 目录Java获取视频文件的视频时长1、导入maven依赖2、代码案例3、SLF4J: Failed to lo

Python实现多路视频多窗口播放功能

《Python实现多路视频多窗口播放功能》这篇文章主要为大家详细介绍了Python实现多路视频多窗口播放功能的相关知识,文中的示例代码讲解详细,有需要的小伙伴可以跟随小编一起学习一下... 目录一、python实现多路视频播放功能二、代码实现三、打包代码实现总结一、python实现多路视频播放功能服务端开

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用