直线拟合(支持任意维空间的直线拟合,附代码)

2024-01-28 08:52

本文主要是介绍直线拟合(支持任意维空间的直线拟合,附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

一、问题描述

  给定一系列的三维空间点 ( x i , y i , z i ) , i = 1 , 2 , . . . , n (x_i,y_i,z_i),i=1,2,...,n (xi,yi,zi),i=1,2,...,n,拟合得到直线的方程。本文的直线拟合方法适用于任意维空间的直线拟合,不失一般性,这里以三维空间的直线拟合为例。本文的直线拟合方法的基本思想参考博文:最小二乘法三维(k维)直线拟合。

二、推导步骤

  设直线的点向式方程为:
x − x 0 a = y − y 0 b = z − z 0 c = s (1) \frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}=s \tag 1 axx0=byy0=czz0=s(1)
  由式(1),得到直线的参数方程为:
{ x = x 0 + a s y = y 0 + b s z = z 0 + c s (2) \left\{ \begin{array}{c} x=x_0+as \\ y=y_0+bs \\ \tag 2 z=z_0+cs\end{array}\right. x=x0+asy=y0+bsz=z0+cs(2)
  式(2)写成向量形式为:
L = L 0 + v s (3) \bm{L}=\bm{L_0}+\bm{v}s \tag 3 L=L0+vs(3)
  其中, L = [ x , y , z ] T \bm{L}=[x,y,z]^T L=[x,y,z]T L 0 = [ x 0 , y 0 , z 0 ] T \bm{L_0}=[x_0,y_0,z_0]^T L0=[x0,y0,z0]T为直线上任意一点, v = [ a , b , c ] T \bm{v}=[a,b,c]^T v=[a,b,c]T为直线的单位方向向量。
  如下图,红色点 L i ( x i , y i , z i ) L_i(x_i,y_i,z_i) Li(xi,yi,zi)为给定的一系列三维空间点,根据给定三维空间点,拟合直线方程(3),也就是计算 L 0 \bm{L_0} L0 v \bm{v} v,使得在某种“距离”的度量下,达到最佳的直线拟合效果。
在这里插入图片描述
  点 L i L_i Li到直线距离的平方为:
∣ ∣ Q i L i ∣ ∣ 2 = ∣ ∣ L 0 L i ∣ ∣ 2 − ∣ ∣ L 0 Q i ∣ ∣ 2 (4) ||\bm{Q_iL_i}||^2 = ||\bm{L_0L_i}||^2 -||\bm{L_0Q_i}||^2 \tag 4 ∣∣QiLi2=∣∣L0Li2∣∣L0Qi2(4)
   L 0 L i \bm{L_0L_i} L0Li在直线的投影的平方为:
∣ ∣ L 0 Q i ∣ ∣ 2 = ( L 0 L i ⋅ v ) 2 (5) ||\bm{L_0Q_i}||^2= (\bm{L_0L_i} \cdot \bm{v})^2\tag 5 ∣∣L0Qi2=(L0Liv)2(5)
  令向量 Y i = L 0 L i = L i − L 0 \bm{Y_i}=\bm{L_0L_i}=\bm{L_i}-\bm{L_0} Yi=L0Li=LiL0,式(4)写成:
∣ ∣ Q i L i ∣ ∣ 2 = ∣ ∣ Y i ∣ ∣ 2 − ( Y i ⋅ v ) 2 = Y i T Y i − ( v T Y i ) 2 (6) ||\bm{Q_iL_i}||^2 = ||\bm{Y_i}||^2 -(\bm{Y_i} \cdot \bm{v})^2= \bm{Y_i}^T \bm{Y_i} -(\bm{v}^T \bm{Y_i})^2 \tag 6 ∣∣QiLi2=∣∣Yi2(Yiv)2=YiTYi(vTYi)2(6)
  在最小二乘准则下,可以建立直线拟合的优化模型目标函数:
f = ∑ i = 1 n ∣ ∣ Q i L i ∣ ∣ 2 = ∑ i = 1 n [ Y i T Y i − ( v T Y i ) 2 ] (7) f=\sum\limits_{i=1}^{n} ||\bm{Q_iL_i}||^2 = \sum\limits_{i=1}^{n}[ \bm{Y_i}^T \bm{Y_i} -(\bm{v}^T \bm{Y_i})^2] \tag 7 f=i=1n∣∣QiLi2=i=1n[YiTYi(vTYi)2](7)
  计算 L 0 \bm{L_0} L0:
  目标函数 f f f对向量 Y i \bm{Y_i} Yi求偏导数:
∂ f ∂ Y i = ∑ i = 1 n ( 2 Y i − 2 v T Y i v ) = ∑ i = 1 n ( 2 Y i − 2 v v T Y i ) = ∑ i = 1 n 2 ( I − v v T ) Y i (8) \frac{ \partial f }{ \partial \bm{Y_i} }=\sum\limits_{i=1}^{n} ( 2\bm{Y_i} -2\bm{v}^T \bm{Y_i}\bm{v})=\sum\limits_{i=1}^{n} ( 2\bm{Y_i} -2\bm{v}\bm{v}^T \bm{Y_i})=\sum\limits_{i=1}^{n}2 (\bm{ I} -\bm{v}\bm{v}^T ) \bm{Y_i}\tag 8 Yif=i=1n(2Yi2vTYiv)=i=1n(2Yi2vvTYi)=i=1n2(IvvT)Yi(8)
  式(8)中,利用了恒等式 v T Y i v ≡ v v T Y i \bm{v}^T \bm{Y_i}\bm{v}\equiv \bm{v}\bm{v}^T \bm{Y_i} vTYivvvTYi,简单进行验算可以证明该恒等式。
  由于 v \bm{v} v为单位向量,可以证明 I − v v T ≠ 0 \bm{ I} -\bm{v}\bm{v}^T\ne \bm{0} IvvT=0
  因此
∑ i = 1 n Y i = ∑ i = 1 n ( L i − L 0 ) = ∑ i = 1 n L i − n L 0 = 0 (9) \sum\limits_{i=1}^{n}\bm{Y_i}= \sum\limits_{i=1}^{n}(\bm{L_i}-\bm{L_0})=\sum\limits_{i=1}^{n}\bm{L_i}-n\bm{L_0}=\bm{0}\tag 9 i=1nYi=i=1n(LiL0)=i=1nLinL0=0(9)
L 0 = 1 n ∑ i = 1 n L i (10) \bm{L_0}=\frac{1}{n}\sum\limits_{i=1}^{n}\bm{L_i}\tag {10} L0=n1i=1nLi(10)
  可以得到结论:待拟合的直线经过一个点 L 0 \bm{L_0} L0,该点的坐标为所有给定点的坐标平均值。如下图所示,一旦确定直线的单位方向向量 v \bm{v} v,则直线的方程便确定。
在这里插入图片描述
  计算 v \bm{v} v:
  对于单位向量 v \bm{v} v v T v = 1 \bm{v}^T\bm{v}=1 vTv=1,可以证明: Y i T Y i ≡ v T ( Y i T Y i ) v \bm{Y_i}^T \bm{Y_i} \equiv\bm{v^T}(\bm{Y_i}^T \bm{Y_i})\bm{v} YiTYivT(YiTYi)v ( v T Y i ) 2 ≡ v T ( Y i Y i T ) v (\bm{v}^T \bm{Y_i})^2 \equiv \bm{v}^T(\bm{Y_i}\bm{Y_i^T})\bm{v} (vTYi)2vT(YiYiT)v

  式(7)可改写成:
f = ∑ i = 1 n [ Y i T Y i − ( v T Y i ) 2 ] = ∑ i = 1 n [ v T ( Y i T Y i ) v − v T ( Y i Y i T ) v ] = v T ∑ i = 1 n [ ( Y i T Y i ) I − Y i Y i T ] v (11) f=\sum\limits_{i=1}^{n}[ \bm{Y_i}^T \bm{Y_i} -(\bm{v}^T \bm{Y_i})^2] =\sum\limits_{i=1}^{n}[ \bm{v^T}(\bm{Y_i}^T \bm{Y_i})\bm{v} -\bm{v}^T(\bm{Y_i}\bm{Y_i^T})\bm{v}] = \bm{v^T}\sum\limits_{i=1}^{n}[ (\bm{Y_i}^T \bm{Y_i}) \bm{I} -\bm{Y_i}\bm{Y_i^T}] \bm{v}\tag {11} f=i=1n[YiTYi(vTYi)2]=i=1n[vT(YiTYi)vvT(YiYiT)v]=vTi=1n[(YiTYi)IYiYiT]v(11)
  令矩阵 S = ∑ i = 1 n [ ( Y i T Y i ) I − Y i Y i T ] S=\sum\limits_{i=1}^{n}[ (\bm{Y_i}^T \bm{Y_i}) \bm{I} -\bm{Y_i}\bm{Y_i^T}] S=i=1n[(YiTYi)IYiYiT],式(11)可写成:

f = v T S v (12) f= \bm{v^T}S \bm{v}\tag {12} f=vTSv(12)
   f f f的最小值为矩阵 S S S最小特征值对应的特征向量。直线方向向量 v v v的求解问题转化为矩阵最小特征值对应的特征向量的求解问题!

三、 M A T L A B MATLAB MATLAB代码

%{
Function: line_fitting
Description: 直线拟合
Input: 任意维直线点数据points,行数为点个数,列数为点的维数
Output: 拟合得到的直线经过的一点L0,直线的单位方向向量v
Author: Marc Pony(marc_pony@163.com)
%}
function [L0, v] = line_fitting(points)
n = size(points, 1);
x = points(:, 1);
y = points(:, 2);
z = points(:, 3);L0 = [mean(x); mean(y); mean(z)];
S = zeros(3,3);
for i = 1 : nYi = [x(i) - L0(1); y(i) - L0(2); z(i) - L0(3)];S = S + (Yi' * Yi * eye(3, 3) - Yi * Yi');
end
[V, ~] = eig(S);v = V(:, 1); %矩阵S最小特征值对应的特征向量
end
%{
Function: generate_line_points
Description: 直线路径点生成
Input: 直线经过的一点L0,直线的单位方向向量v,点个数n,路径标量最小值minS,路径标量最大值maxS
Output: 任意维直线点数据points,行数为点个数,列数为点的维数
Author: Marc Pony(marc_pony@163.com)
%}
function points = generate_line_points(L0, v, n, minS, maxS)
points = zeros(n, length(v));
s = linspace(minS, maxS, n);
for i = 1 : npoints(i, :) = (L0 + v * s(i))';
end
end
clear
clc
close all%% 验证恒等式: v'*Yi*v = v*v'*Yi
syms v1 v2 v3 y1 y2 y3 real
v = [v1; v2; v3];
Yi = [y1; y2; y3];
res1 = simplify(v'*Yi*v - v*v'*Yi)%% 验证恒等式: Yi'*Yi = v'*(Yi'*Yi)*v, 其中v'*v=1
res2 = [Yi'*Yi; simplify(v'*(Yi'*Yi)*v)]%% 验证恒等式: (v'*Yi)^2 = v'*(Yi*Yi')*v
res3 = simplify((v'*Yi)^2 - v'*(Yi*Yi')*v)% points = [1 0 0
%     1 10 0
%     1 20 0
%     ];
% points = [0 1 0
%     10 1 0
%     200 1 0
%     ];
% points = [1 1 1
%     2 1 2
%     ];figure
axis([-10, 10, -10, 10])
hold on
pointCount = 6;
points = zeros(pointCount, 3);
for i = 1 : pointCount[points(i, 1), points(i, 2)] = ginput(1);plot(points(i, 1), points(i, 2), '+')
end[L0, v] = line_fitting(points)n = 100;
len = sqrt((max(points(:,1)) - min(points(:,1)))^2 + (max(points(:,2)) - min(points(:,2)))^2 + (max(points(:,3)) - min(points(:,3)))^2);
minS = -0.6 * len;
maxS = 0.6 * len;
p = generate_line_points(L0, v, n, minS, maxS);
plot3(p(:,1), p(:,2), p(:,3), '-')

在这里插入图片描述

这篇关于直线拟合(支持任意维空间的直线拟合,附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653111

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

mybatis-plus如何根据任意字段saveOrUpdateBatch

《mybatis-plus如何根据任意字段saveOrUpdateBatch》MyBatisPlussaveOrUpdateBatch默认按主键判断操作类型,若需按其他唯一字段(如agentId、pe... 目录使用场景方法源码方法改造首先在service层定义接口service层接口实现总结使用场景my

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引