两轮平衡小车制作保姆式教程(2-2)——软件模块:直流编码器电机的使用

本文主要是介绍两轮平衡小车制作保姆式教程(2-2)——软件模块:直流编码器电机的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:大家好我是:麦克斯科技,希望一起努力,一起进步!

📃个人主页:麦克斯科技

🔥系列专栏:两轮平衡小车制作保姆式教程
🏷️非常欢迎大家在评论区留言交流,互相学习!

提前声明:博客中给出的代码经过多个项目测试,实测能用,性能稳定,请大家放心使用!

前言

本系列博客将从硬件到软件详细介绍“如何制作一辆两轮自平衡小车”,笔者毫无保留,以最通俗易懂的语言,以最简单的实现方案,分享自己从0到1制作平衡小车的全过程,相信跟着我的教程,大家也能顺利制作一台属于自己的平衡车。系列专栏:🔥两轮平衡小车制作保姆式教程🔥

首先,给大家提前交个底,其实制作一台平衡小车并不难,用到的主要模块就是陀螺仪,而最主要的控制算法就是PID算法,而且平衡小车对陀螺仪与PID算法的掌握程度要求并不是很高,所以适合初学者来作为项目练手。

该系列教程一共分为4个板块,分为《硬件选型》、《软件模块》、《直立环、速度环、转向环》、《调参保姆级教程》,4个板块条理清晰,层次分明,简明扼要,请大家跟着我开始学习吧!

编码器和电机

编码器和电机的底层程序,其实就是STM32定时器编码器模式与TB6612的使用,非常简单,这里给出STM32F103的范例程序。

我的资源分配方案如下:
编码器1–PA0、PA1 TIM5 右
编码器2–PB6、PB7 TIM4 左
PWMA:B0
PWMB: B1
AIN1:PB12
AIN2:PB13
BIN1:PB14
BIN2:PB15

hal_encoder.c

//**********************编码器时钟初始化*********************
void Encoder_Count_RCC(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5,ENABLE);
}
//**********************编码器引脚初始化*********************
void Encoder_Count_GPIO(void)
{GPIO_InitTypeDef GPIO_InitStruct;//**********TIM4,B6,B7****************GPIO_InitStruct.GPIO_Mode=GPIO_Mode_IPU;GPIO_InitStruct.GPIO_Pin=GPIO_Pin_6|GPIO_Pin_7;GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStruct);//**********TIM5,A0,A1****************GPIO_InitStruct.GPIO_Mode=GPIO_Mode_IPU;GPIO_InitStruct.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1;GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStruct);}
//**********************编码器功能初始化*********************
void Encoder_Count_Configuration(void)
{TIM_ICInitTypeDef TIM_ICInitStruct;TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;//**********TIM4,B6,B7***********************************TIM_TimeBaseInitStruct.TIM_ClockDivision=TIM_CKD_DIV1;TIM_TimeBaseInitStruct.TIM_Period=65535;    //65536-1TIM_TimeBaseInitStruct.TIM_Prescaler=0;     //1-1TIM_TimeBaseInitStruct.TIM_RepetitionCounter=0;TIM_TimeBaseInit(TIM4,&TIM_TimeBaseInitStruct);	TIM_ICStructInit(&TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel=TIM_Channel_1;TIM_ICInitStruct.TIM_ICFilter=0xF;TIM_ICInitStruct.TIM_ICPolarity=TIM_ICPolarity_Rising;TIM_ICInit(TIM4, &TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel=TIM_Channel_2;TIM_ICInitStruct.TIM_ICFilter=0xF;TIM_ICInitStruct.TIM_ICPolarity=TIM_ICPolarity_Rising;TIM_ICInit(TIM4, &TIM_ICInitStruct);	TIM_EncoderInterfaceConfig(TIM4,TIM_EncoderMode_TI12,TIM_ICPolarity_Falling,TIM_ICPolarity_Rising);TIM_Cmd(TIM4,ENABLE);  //**********TIM5,A0,A1***********************************TIM_TimeBaseInitStruct.TIM_ClockDivision=TIM_CKD_DIV1;TIM_TimeBaseInitStruct.TIM_Period=65535;    //65536-1TIM_TimeBaseInitStruct.TIM_Prescaler=0;     //1-1TIM_TimeBaseInitStruct.TIM_RepetitionCounter=0;TIM_TimeBaseInit(TIM5,&TIM_TimeBaseInitStruct);	TIM_ICStructInit(&TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel=TIM_Channel_1;TIM_ICInitStruct.TIM_ICFilter=0xF;TIM_ICInitStruct.TIM_ICPolarity=TIM_ICPolarity_Rising;TIM_ICInit(TIM5, &TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel=TIM_Channel_2;TIM_ICInitStruct.TIM_ICFilter=0xF;TIM_ICInitStruct.TIM_ICPolarity=TIM_ICPolarity_Rising;TIM_ICInit(TIM5, &TIM_ICInitStruct);	TIM_EncoderInterfaceConfig(TIM5,TIM_EncoderMode_TI12,TIM_ICPolarity_Falling,TIM_ICPolarity_Rising);TIM_Cmd(TIM5,ENABLE);  
}
//**********************编码器初始化*********************
void Encoder_Count_Init(void)
{Encoder_Count_RCC();Encoder_Count_GPIO();Encoder_Count_Configuration();
}
//******************编码器数据读取********************************
int Encoder_Value(TIM_TypeDef* TIMx)
{ int channal_val=0;channal_val = TIMx ->CNT;if(channal_val>>15){			channal_val =  (channal_val&0x7FFF)-32767;}	return channal_val;
}
//****************编码器清零*************************************
void Encoder_Count_Clear(TIM_TypeDef* TIMx)
{TIMx ->CNT = 0;
}

hal_encoder.h

#ifndef _HAL_ENCODER_H
#define _HAL_ENCODER_H#include "stm32f10x.h"
//**************************************************
void Encoder_Count_RCC(void);
void Encoder_Count_GPIO(void);
void Encoder_Count_Configuration(void);
void Encoder_Count_Init(void);
int Encoder_Value(TIM_TypeDef* TIMx);
void Encoder_Count_Clear(TIM_TypeDef* TIMx);#endif

hal_pwm.c

/***
配置PWM通道 产生PWM 一个tb6612可以同时驱动两路电机
***///**********************配置系统时钟*********************************
void PWM_RCC(void)
{ //使能GPIO外设(PWM引脚B0 B1 B4 B5 时钟配置)和AFIO复用功能模块时钟  B4 B5是JTDO下载引脚RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB  | RCC_APB2Periph_AFIO, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);     //打开time3的中断时钟GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3部分重映射  TIM3_CH2->PB5   
}
//**********************配置GPIO管脚****************B0 B1 //B4 B5//***************
void PWM_GPIO(void)
{GPIO_InitTypeDef GPIO_InitStructure;//PWM管脚PWM1配置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOB, &GPIO_InitStructure);//PWM管脚PWM2配置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOB, &GPIO_InitStructure);driver_pin_init();}
//**********************时钟中断配置函数*********************************
void PWM_TIM3_Configuration(void)
{ TIM_OCInitTypeDef  TIM_OCInitStructure;                      //定义结构体变量TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  //GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3,DISABLE);         //关闭映射功能   TIM_TimeBaseStructure.TIM_Period=100;                       //计数100,PWM频率10KHz  TIM_TimeBaseStructure.TIM_Prescaler=72;                       //不分频TIM_TimeBaseStructure.TIM_ClockDivision=0;                   //不滤波TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;    //向上计数模式TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);               //初始化TIM_Cmd(TIM3,ENABLE);                                        //打开定时器外设
//***配置PWM1**********	
//  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;            //PWM模式1
//  TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;  //打开PWM使能
//  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;     //输出极性
//	TIM_OC1Init(TIM3, & TIM_OCInitStructure); 	                 //初始化  使用通道1
//	TIM_OC1PreloadConfig(TIM3,TIM_OCPreload_Enable);             //打开PWM中断使能,否则只能执行一次
	
	//***配置PWM2**********	
//  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;            //PWM模式1
//  TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;  //打开PWM使能
//  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;     //输出极性
//	TIM_OC2Init(TIM3, & TIM_OCInitStructure); 	                 //初始化  使用通道2
//	TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable);             //打开PWM中断使能,否则只能执行一次
//	
	//***配置PWM3**********	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;            //PWM模式1TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;  //打开PWM使能TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;     //输出极性TIM_OC3Init(TIM3, & TIM_OCInitStructure); 	                 //初始化  使用通道3TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Enable);             //打开PWM中断使能,否则只能执行一次
//	
//	//***配置PWM4**********	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;            //PWM模式1TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;  //打开PWM使能TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;     //输出极性TIM_OC4Init(TIM3, & TIM_OCInitStructure); 	                 //初始化  使用通道4TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Enable);             //打开PWM中断使能,否则只能执行一次}
//**************************配置优先级***********************************
void TIM3_NVIC_Configuration(void)
{NVIC_InitTypeDef NVIC_InitStructure;                        //为结构体定义结构体变量NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);             //对优先级进行分组NVIC_InitStructure.NVIC_IRQChannel =TIM3_IRQn;              NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;   //抢占优先级为1NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;          //响应优先级为0         NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;             //使能NVIC_Init(&NVIC_InitStructure);                             //初始化
}
//**********************PWM初始化函数*********************************
void PWM_Init(void)
{PWM_RCC();                  //PWM时钟配置   PWM_GPIO();                 //PWM管脚配置PWM_TIM3_Configuration();   //占空比时钟控制 TIM3_NVIC_Configuration();  //优先级配置TIM_SetCompare3(TIM3,0);    //防止上电就乱动  PB0TIM_SetCompare4(TIM3,0);    //防止上电就乱动  PB1NEncoder.left_motor_dir = 1;NEncoder.right_motor_dir = 1;}
/***驱动引脚配置 PB12 13 14 15***/
void driver_pin_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;	RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB,ENABLE); 						 GPIO_InitStructure.GPIO_Pin = AIN1_PIN | AIN2_PIN | BIN1_PIN | BIN2_PIN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure);L_MOTOR_GO;	R_MOTOR_GO;
}

hal_pwm.h

#ifndef _HAL_PWM_H
#define _HAL_PWM_H
#include "stm32f10x.h"#define AIN1_PIN GPIO_Pin_12
#define AIN2_PIN GPIO_Pin_13
#define BIN1_PIN GPIO_Pin_14
#define BIN2_PIN GPIO_Pin_15
//电机初始化相关函数
void PWM_RCC(void);                  //时钟配置   
void PWM_GPIO(void);                 //管脚配置
void PWM_TIM3_Configuration(void);   //占空比时钟控制
void TIM3_NVIC_Configuration(void);  //优先级
void PWM_Init(void);                 //初始化 
void driver_pin_init(void);#endif 

这篇关于两轮平衡小车制作保姆式教程(2-2)——软件模块:直流编码器电机的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652327

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud