两轮平衡小车制作保姆式教程(2-2)——软件模块:直流编码器电机的使用

本文主要是介绍两轮平衡小车制作保姆式教程(2-2)——软件模块:直流编码器电机的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:大家好我是:麦克斯科技,希望一起努力,一起进步!

📃个人主页:麦克斯科技

🔥系列专栏:两轮平衡小车制作保姆式教程
🏷️非常欢迎大家在评论区留言交流,互相学习!

提前声明:博客中给出的代码经过多个项目测试,实测能用,性能稳定,请大家放心使用!

前言

本系列博客将从硬件到软件详细介绍“如何制作一辆两轮自平衡小车”,笔者毫无保留,以最通俗易懂的语言,以最简单的实现方案,分享自己从0到1制作平衡小车的全过程,相信跟着我的教程,大家也能顺利制作一台属于自己的平衡车。系列专栏:🔥两轮平衡小车制作保姆式教程🔥

首先,给大家提前交个底,其实制作一台平衡小车并不难,用到的主要模块就是陀螺仪,而最主要的控制算法就是PID算法,而且平衡小车对陀螺仪与PID算法的掌握程度要求并不是很高,所以适合初学者来作为项目练手。

该系列教程一共分为4个板块,分为《硬件选型》、《软件模块》、《直立环、速度环、转向环》、《调参保姆级教程》,4个板块条理清晰,层次分明,简明扼要,请大家跟着我开始学习吧!

编码器和电机

编码器和电机的底层程序,其实就是STM32定时器编码器模式与TB6612的使用,非常简单,这里给出STM32F103的范例程序。

我的资源分配方案如下:
编码器1–PA0、PA1 TIM5 右
编码器2–PB6、PB7 TIM4 左
PWMA:B0
PWMB: B1
AIN1:PB12
AIN2:PB13
BIN1:PB14
BIN2:PB15

hal_encoder.c

//**********************编码器时钟初始化*********************
void Encoder_Count_RCC(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5,ENABLE);
}
//**********************编码器引脚初始化*********************
void Encoder_Count_GPIO(void)
{GPIO_InitTypeDef GPIO_InitStruct;//**********TIM4,B6,B7****************GPIO_InitStruct.GPIO_Mode=GPIO_Mode_IPU;GPIO_InitStruct.GPIO_Pin=GPIO_Pin_6|GPIO_Pin_7;GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStruct);//**********TIM5,A0,A1****************GPIO_InitStruct.GPIO_Mode=GPIO_Mode_IPU;GPIO_InitStruct.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1;GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStruct);}
//**********************编码器功能初始化*********************
void Encoder_Count_Configuration(void)
{TIM_ICInitTypeDef TIM_ICInitStruct;TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;//**********TIM4,B6,B7***********************************TIM_TimeBaseInitStruct.TIM_ClockDivision=TIM_CKD_DIV1;TIM_TimeBaseInitStruct.TIM_Period=65535;    //65536-1TIM_TimeBaseInitStruct.TIM_Prescaler=0;     //1-1TIM_TimeBaseInitStruct.TIM_RepetitionCounter=0;TIM_TimeBaseInit(TIM4,&TIM_TimeBaseInitStruct);	TIM_ICStructInit(&TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel=TIM_Channel_1;TIM_ICInitStruct.TIM_ICFilter=0xF;TIM_ICInitStruct.TIM_ICPolarity=TIM_ICPolarity_Rising;TIM_ICInit(TIM4, &TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel=TIM_Channel_2;TIM_ICInitStruct.TIM_ICFilter=0xF;TIM_ICInitStruct.TIM_ICPolarity=TIM_ICPolarity_Rising;TIM_ICInit(TIM4, &TIM_ICInitStruct);	TIM_EncoderInterfaceConfig(TIM4,TIM_EncoderMode_TI12,TIM_ICPolarity_Falling,TIM_ICPolarity_Rising);TIM_Cmd(TIM4,ENABLE);  //**********TIM5,A0,A1***********************************TIM_TimeBaseInitStruct.TIM_ClockDivision=TIM_CKD_DIV1;TIM_TimeBaseInitStruct.TIM_Period=65535;    //65536-1TIM_TimeBaseInitStruct.TIM_Prescaler=0;     //1-1TIM_TimeBaseInitStruct.TIM_RepetitionCounter=0;TIM_TimeBaseInit(TIM5,&TIM_TimeBaseInitStruct);	TIM_ICStructInit(&TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel=TIM_Channel_1;TIM_ICInitStruct.TIM_ICFilter=0xF;TIM_ICInitStruct.TIM_ICPolarity=TIM_ICPolarity_Rising;TIM_ICInit(TIM5, &TIM_ICInitStruct);TIM_ICInitStruct.TIM_Channel=TIM_Channel_2;TIM_ICInitStruct.TIM_ICFilter=0xF;TIM_ICInitStruct.TIM_ICPolarity=TIM_ICPolarity_Rising;TIM_ICInit(TIM5, &TIM_ICInitStruct);	TIM_EncoderInterfaceConfig(TIM5,TIM_EncoderMode_TI12,TIM_ICPolarity_Falling,TIM_ICPolarity_Rising);TIM_Cmd(TIM5,ENABLE);  
}
//**********************编码器初始化*********************
void Encoder_Count_Init(void)
{Encoder_Count_RCC();Encoder_Count_GPIO();Encoder_Count_Configuration();
}
//******************编码器数据读取********************************
int Encoder_Value(TIM_TypeDef* TIMx)
{ int channal_val=0;channal_val = TIMx ->CNT;if(channal_val>>15){			channal_val =  (channal_val&0x7FFF)-32767;}	return channal_val;
}
//****************编码器清零*************************************
void Encoder_Count_Clear(TIM_TypeDef* TIMx)
{TIMx ->CNT = 0;
}

hal_encoder.h

#ifndef _HAL_ENCODER_H
#define _HAL_ENCODER_H#include "stm32f10x.h"
//**************************************************
void Encoder_Count_RCC(void);
void Encoder_Count_GPIO(void);
void Encoder_Count_Configuration(void);
void Encoder_Count_Init(void);
int Encoder_Value(TIM_TypeDef* TIMx);
void Encoder_Count_Clear(TIM_TypeDef* TIMx);#endif

hal_pwm.c

/***
配置PWM通道 产生PWM 一个tb6612可以同时驱动两路电机
***///**********************配置系统时钟*********************************
void PWM_RCC(void)
{ //使能GPIO外设(PWM引脚B0 B1 B4 B5 时钟配置)和AFIO复用功能模块时钟  B4 B5是JTDO下载引脚RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB  | RCC_APB2Periph_AFIO, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);     //打开time3的中断时钟GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3部分重映射  TIM3_CH2->PB5   
}
//**********************配置GPIO管脚****************B0 B1 //B4 B5//***************
void PWM_GPIO(void)
{GPIO_InitTypeDef GPIO_InitStructure;//PWM管脚PWM1配置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOB, &GPIO_InitStructure);//PWM管脚PWM2配置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOB, &GPIO_InitStructure);driver_pin_init();}
//**********************时钟中断配置函数*********************************
void PWM_TIM3_Configuration(void)
{ TIM_OCInitTypeDef  TIM_OCInitStructure;                      //定义结构体变量TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  //GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3,DISABLE);         //关闭映射功能   TIM_TimeBaseStructure.TIM_Period=100;                       //计数100,PWM频率10KHz  TIM_TimeBaseStructure.TIM_Prescaler=72;                       //不分频TIM_TimeBaseStructure.TIM_ClockDivision=0;                   //不滤波TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;    //向上计数模式TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);               //初始化TIM_Cmd(TIM3,ENABLE);                                        //打开定时器外设
//***配置PWM1**********	
//  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;            //PWM模式1
//  TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;  //打开PWM使能
//  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;     //输出极性
//	TIM_OC1Init(TIM3, & TIM_OCInitStructure); 	                 //初始化  使用通道1
//	TIM_OC1PreloadConfig(TIM3,TIM_OCPreload_Enable);             //打开PWM中断使能,否则只能执行一次
	
	//***配置PWM2**********	
//  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;            //PWM模式1
//  TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;  //打开PWM使能
//  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;     //输出极性
//	TIM_OC2Init(TIM3, & TIM_OCInitStructure); 	                 //初始化  使用通道2
//	TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable);             //打开PWM中断使能,否则只能执行一次
//	
	//***配置PWM3**********	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;            //PWM模式1TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;  //打开PWM使能TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;     //输出极性TIM_OC3Init(TIM3, & TIM_OCInitStructure); 	                 //初始化  使用通道3TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Enable);             //打开PWM中断使能,否则只能执行一次
//	
//	//***配置PWM4**********	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;            //PWM模式1TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;  //打开PWM使能TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;     //输出极性TIM_OC4Init(TIM3, & TIM_OCInitStructure); 	                 //初始化  使用通道4TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Enable);             //打开PWM中断使能,否则只能执行一次}
//**************************配置优先级***********************************
void TIM3_NVIC_Configuration(void)
{NVIC_InitTypeDef NVIC_InitStructure;                        //为结构体定义结构体变量NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);             //对优先级进行分组NVIC_InitStructure.NVIC_IRQChannel =TIM3_IRQn;              NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;   //抢占优先级为1NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;          //响应优先级为0         NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;             //使能NVIC_Init(&NVIC_InitStructure);                             //初始化
}
//**********************PWM初始化函数*********************************
void PWM_Init(void)
{PWM_RCC();                  //PWM时钟配置   PWM_GPIO();                 //PWM管脚配置PWM_TIM3_Configuration();   //占空比时钟控制 TIM3_NVIC_Configuration();  //优先级配置TIM_SetCompare3(TIM3,0);    //防止上电就乱动  PB0TIM_SetCompare4(TIM3,0);    //防止上电就乱动  PB1NEncoder.left_motor_dir = 1;NEncoder.right_motor_dir = 1;}
/***驱动引脚配置 PB12 13 14 15***/
void driver_pin_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;	RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB,ENABLE); 						 GPIO_InitStructure.GPIO_Pin = AIN1_PIN | AIN2_PIN | BIN1_PIN | BIN2_PIN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure);L_MOTOR_GO;	R_MOTOR_GO;
}

hal_pwm.h

#ifndef _HAL_PWM_H
#define _HAL_PWM_H
#include "stm32f10x.h"#define AIN1_PIN GPIO_Pin_12
#define AIN2_PIN GPIO_Pin_13
#define BIN1_PIN GPIO_Pin_14
#define BIN2_PIN GPIO_Pin_15
//电机初始化相关函数
void PWM_RCC(void);                  //时钟配置   
void PWM_GPIO(void);                 //管脚配置
void PWM_TIM3_Configuration(void);   //占空比时钟控制
void TIM3_NVIC_Configuration(void);  //优先级
void PWM_Init(void);                 //初始化 
void driver_pin_init(void);#endif 

这篇关于两轮平衡小车制作保姆式教程(2-2)——软件模块:直流编码器电机的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652327

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四