【过程发现算法1】-Inductive Miner(归纳式挖掘)

2024-01-27 20:30

本文主要是介绍【过程发现算法1】-Inductive Miner(归纳式挖掘),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Inductive Miner(归纳式挖掘)是目前已有的过程发现算法中最先进的一种算法,在2013年由sander提出,他是一种基于过程树的算法,并在上面衍生了各种变体算法,比如Inductive Miner-Infrequency, Inductive Miner-Lifecycle等,接下来,我们就详细地介绍这个基本的Inductive Miner算法。


1.背景介绍

已有过程发现算法比较
发现算法代表性算法可重新发现性fitnesssoundness其他
基于活动顺序关系

α算法及其变体

相对小的日志的同构重发现

X

X

基于语义的技术the language-based region minerthe state-based region minerILP miner

X

X

X

基于频率的技术

           Heuristics miner

-

X

X

基于抽象的技术

Fuzzy Miner

X

X

X

Genetic process discovery algorithms

--

V

不能保证在有限的时间内运行

        现有的挖掘算法不能保证在有限的时间内(没有死锁和其他异常)模型是fitting(表示所有的行为)soundness(合理的)

       不合理的模型可以通过模拟退火来修复,使其变得健全,尽管不保留对给定日志的拟合性。不拟合的模型可以通过添加子过程来修复,使其变得拟合,尽管不能保证其可靠性。

       因此,需一个更综合的方法保证合理性和拟合度,并且在有限的时间内得到块结构(block-structured)模型。IM算法应用而生。

2.思想概述 

该框架采用分而治之的方法, 将发现一个日志 L 的过程模型的问题分解为发现通过拆分 L 得到的n 个子日志的 n 个子过程 .
本文共用了四种基本运算符:
X:    排他运算符;  -> :   顺序运算符;  Q :  循环运算符;  ^ :    并发运算符

 上图中的每个小圆圈代表每个子过程,四种运算符的详细规则如下:

排他运算符的规则为一个子过程A与另一个子过程B两个之间没有任何关联,一个子过程A中的活动的后继活动不能在另一个子过程B中,一个子过程B中的活动的后继活动不能在另一个子过程A中,两者互不关联

顺序运算符的规则为从一个子过程A到另一个子过程B有出边,但是无入边,两者总体上只有一方到另一方

并发运算符的规则为一个子过程A既有到另一个子过程的出边,也有另一个子过程B到这个子过程A的入边。两者彼此交叉,并行存在

循环运算符的规则为一个活动从子过程A出发,到达另一个子过程B中,再由B重现回到A。总结为起于此终于此

3. 举例说明

假设存在事件日志 L = {< a, b, c >, < a, c, b >, < a, d, e >, < a, d, e, f, d, e >}.

(1).将事件日志转化为直接跟随活动图(DFG)

(2).使用四种切分运算符对上述的DFG进行拆分,拆分过程如下: 

其中图中a ,b ,c ,d依次进行的切分操作为顺序切分,排他切分,并发切分,循环切分

 用过程语言可表示为:

L = {<a, b, c >, < a, c, b >, < a, d, e >, <a, d, e, f, d, e >},依次进行的操作如下:

1.SEQUENCESPLIT(L,({a},{b, c, d, e, f})) =[L1={< a >},L2={<b, c >, <c, b >, <d, e >, <d, e, f, d, e >}]

2.EXCLUSIVECHOICESPLIT(L2,({b, c},{d, e, f})) = {L3=<b, c>, < c, b >},{L4=< d, e >, <d, e, f, d, e >}]

3.PARALLELSPLIT(L3,({b},{c})) ={<b >},{<c >}

4.LOOPSPLIT(L4,({d, e},{f})) = {<d, e >},{< f >}

(3).根据上述过程转化为过程树语言如下:

 发现模型: M= →(a, X(∧(b, c), Q (→ (d,e),f)))

 (4).过程树转化为Petri网

四种基本形式的对应转化:

按照以上四种基本规则,最终得到的Petri网结果如下:

4.工具插件

(1)使用prom6运行的插件svn下载地址:prom - Revision 46111: /Packages/InductiveMinerDeprecated/Trunk (tue.nl)

运行插件界面图:

 

 (2)使用pm4py调用Inductive Miner算法的链接地址:

PM4Py - Process Mining for Python (fraunhofer.de)

 4.总结

由Inductive Miner得到的过程模型能够完全拟合事件日志中的行为,但还存在以下不足:

(1)没有考虑事件日志中直接跟随活动关系的频次;

(2)在过程树转化为Petri网的过程中,无声变迁(上图中的黑色方块)数量增多,导致过程模型的精度降低。


参考文献:LEEMANS S J J, FAHLAND D, VAN DER AALST W M P. Discovering block-structured process models from event logs-a constructive approach[C]//International conference on applications and theory of Petri nets and concurrency. Berlin, Germany: Springer-Verlag, 2013: 311-329.

 下一讲将针对Inductive Miner存在的不足,介绍其算法的变体-Inductive Miner-infrequent。

如需进行相关的了解或者交流,欢迎私信或者加入QQ群:

这篇关于【过程发现算法1】-Inductive Miner(归纳式挖掘)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/651401

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费