LC 2846. 边权重均等查询

2024-01-27 20:20
文章标签 查询 权重 lc 均等 2846

本文主要是介绍LC 2846. 边权重均等查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2846. 边权重均等查询

难度: 困难

题目大意:

现有一棵由 n 个节点组成的无向树,节点按从 0n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ui, vi, wi] 表示树中存在一条位于节点 ui 和节点 vi 之间、权重为 wi 的边。

另给你一个长度为 m 的二维整数数组 queries ,其中 queries[i] = [ai, bi] 。对于每条查询,请你找出使从 aibi 路径上每条边的权重相等所需的 最小操作次数 。在一次操作中,你可以选择树上的任意一条边,并将其权重更改为任意值。

注意:

  • 查询之间 相互独立 的,这意味着每条新的查询时,树都会回到 初始状态
  • aibi的路径是一个由 不同 节点组成的序列,从节点 ai 开始,到节点 bi 结束,且序列中相邻的两个节点在树中共享一条边。

返回一个长度为 m 的数组 answer ,其中 answer[i] 是第 i 条查询的答案。

提示:

  • 1 <= n <= 10^4
  • edges.length == n - 1
  • edges[i].length == 3
  • 0 <= ui, vi < n
  • 1 <= wi <= 26
  • 生成的输入满足 edges 表示一棵有效的树
  • 1 <= queries.length == m <= 2 * 10^4
  • queries[i].length == 2
  • 0 <= ai, bi < n

示例 1:
请添加图片描述

输入:n = 7, edges = [[0,1,1],[1,2,1],[2,3,1],[3,4,2],[4,5,2],[5,6,2]], queries = [[0,3],[3,6],[2,6],[0,6]]
输出:[0,0,1,3]
解释:第 1 条查询,从节点 0 到节点 3 的路径中的所有边的权重都是 1 。因此,答案为 0 。
第 2 条查询,从节点 3 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 0 。
第 3 条查询,将边 [2,3] 的权重变更为 2 。在这次操作之后,从节点 2 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 1 。
第 4 条查询,将边 [0,1]、[1,2]、[2,3] 的权重变更为 2 。在这次操作之后,从节点 0 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 3 。
对于每条查询 queries[i] ,可以证明 answer[i] 是使从 ai 到 bi 的路径中的所有边的权重相等的最小操作次数。

分析

如果暴力写的话, 那么对于每一个查询,我们要dfs一遍,每一遍存一下路径上的边权得数量,最后用总的数量减去最多的变得数量就是答案,这是一个小贪心的思路,那么考虑一下数据范围,如果暴力写的话,时间复杂度是 O ( n 2 ) O(n^2) O(n2),肯定会超时的,但是也吧暴力写法的代码贴出来。

723 / 733 个通过的测试用例

暴力 dfs (会超时)

class Solution {
public:vector<int> minOperationsQueries(int n, vector<vector<int>>& edges, vector<vector<int>>& queries) {int m = queries.size();vector<int> e(n << 1), ne(n << 1), h(n, -1), w(n << 1), ans(m); // 链式向前星int cnt[27], idx = 0;// addfunction<void(int, int, int)> add = [&](int a, int b, int c) {e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;e[idx] = a, ne[idx] = h[b], w[idx] = c, h[b] = idx ++;}; // add// dfsfunction<bool(int, int, int)> dfs = [&](int u, int b, int fa) {if (u == b) {return true;}for (int i = h[u]; ~i; i = ne[i]) {int j = e[i];if (j == fa) continue;if (dfs(j, b, u)) {++ cnt[w[i]];return true;}}return false;}; // dfsfor (int i = 0; i < n - 1; i ++ ) {int a = edges[i][0], b = edges[i][1], w = edges[i][2];add(a, b, w);}for (int i = 0; i < m; i ++) {memset(cnt, 0, sizeof cnt); // 每次清空数组int a = queries[i][0], b = queries[i][1];dfs(a, b, -1);int res = 0, sum = 0;for (int i = 1; i <= 26; i ++) {sum += cnt[i];res = max(res, cnt[i]);}ans[i] = sum - res;}return ans;}
};

时间复杂度: O ( n ∗ m ∗ W ) O(n*m*W) O(nmW) (本题 W = 26)

分析

我们可以用最近公共祖先的思想,选定一个根节点,假设是0,那么定义一个cnt[i][w]表示节点i到根节点的路径中边权为w(1 <= w <= 26)的边的数量,那么ij之间边权为w的边数是 t a = c n t [ i ] [ w ] + c n t [ j ] [ w ] − 2 ∗ c n t [ l c a ( i , j ) ] [ w ] t_a = cnt[i][w] + cnt[j][w] - 2 * cnt[lca(i, j)][w] ta=cnt[i][w]+cnt[j][w]2cnt[lca(i,j)][w]lca(i, j)表示节点i和节点j的最近公共祖先, 那么要替换的边数就是
∑ i = 1 26 t i − max ⁡ 1 < = i < = 26 t i \sum_{i = 1}^{26} {t_i} - \max_{1 <= i <= 26}t_i i=126ti1<=i<=26maxti
使用离线算法tarjan算法模板

tarjan + 并查集

class Solution {
public:using PII = pair<int, int>;vector<int> minOperationsQueries(int n, vector<vector<int>>& edges, vector<vector<int>>& queries) {int m = queries.size();vector<unordered_map<int, int>> g(n);for (auto& e : edges) {g[e[0]][e[1]] = e[2];g[e[1]][e[0]] = e[2];}vector<vector<PII>> q(n);   for (int i = 0; i < m; i ++ ){q[queries[i][0]].push_back({queries[i][1], i});q[queries[i][1]].push_back({queries[i][0], i});}vector<int> lca(m), vis(n), p(n);iota(p.begin(), p.end(), 0);vector<vector<int>> cnt(n, vector<int>(27));function<int(int)> find = [&](int x) {if (x != p[x]) p[x] = find(p[x]);return p[x];};function<void(int, int)> tarjan = [&](int u, int fa) {if (fa != -1) {cnt[u] = cnt[fa];++ cnt[u][g[u][fa]];}p[u] = u;for (auto& e : g[u]) {if (e.first == fa) continue;tarjan(e.first, u);p[e.first] = u;}for (auto& e : q[u]) {if (u != e.first && !vis[e.first]) continue;lca[e.second] = find(e.first);}vis[u] = 1;};tarjan(0, -1);vector<int> res(m);for (int i = 0; i < m; i ++ ){int sum = 0, mx = 0;for (int j = 1; j <= 26;j ++) {int t = cnt[queries[i][0]][j] + cnt[queries[i][1]][j] - 2 * cnt[lca[i]][j];mx = max(mx, t);sum += t;}res[i] = sum - mx;}return res;}
};

时间复杂度: O ( ( m + n ) × W + m × l o g n ) O((m+n)×W+m×logn) O((m+n)×W+m×logn) (本题 W = 26)

在线lca算法

const int N = 10010;
class Solution {
public:int e[N << 1], ne[N << 1], w[N << 1], h[N],  idx;int fa[N][15], depth[N];int cnt[N][27], cntn[27];int q[N];void bfs() {int hh = 0, tt = 0;q[0] = 1;memset(depth, 0x3f, sizeof depth);depth[0] = 0, depth[1] = 1;while (hh <= tt) {int t = q[hh ++ ];for (int i = h[t]; ~i; i = ne[i]) {int j = e[i];if (depth[j] > depth[t] + 1) {depth[j] = depth[t] + 1;q[ ++ tt] = j;fa[j][0] = t;for (int k = 1; k <= 14; k ++ )fa[j][k] = fa[fa[j][k - 1]][k - 1];}}}}// dfs版本void dfs_dep(int u, int father) {depth[u] = depth[father] + 1;fa[u][0] = father;for (int i = 1; i <= 14; i ++) fa[u][i] = fa[fa[u][i - 1]][i - 1];for (int i = h[u]; ~i; i = ne[i]) {if (e[i] != father) {dfs_dep(e[i], u);}}}void add(int a, int b, int c) {e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++ ;}void dfs(int u, int fa) {memcpy(cnt[u], cntn, sizeof cntn);for (int i = h[u]; ~i; i = ne[i]) {int j = e[i];if (fa == j) continue;cntn[w[i]] ++;dfs(j, u);cntn[w[i]] -- ;}}int lca(int a, int b){if (depth[a] < depth[b]) swap(a, b);for (int k = 14; k >= 0; k -- )if (depth[fa[a][k]] >= depth[b]) a = fa[a][k];if (a == b) return a;for (int k = 14; k >= 0; k -- ) {if (fa[a][k] != fa[b][k]) {a = fa[a][k];b = fa[b][k];}}return fa[a][0];}vector<int> minOperationsQueries(int n, vector<vector<int>>& edges, vector<vector<int>>& queries) {memset(h, -1,sizeof h);for (int i = 0; i < edges.size(); i ++ ) {int a = edges[i][0], b = edges[i][1], c = edges[i][2];a ++, b ++ ;add(a, b, c), add(b, a, c);}bfs();// dfs_dep(1, 0); // dfs_dep版本dfs(1, -1);vector<int> ans(queries.size());for (int i = 0; i < queries.size(); i ++ ) {int a = queries[i][0], b = queries[i][1];a ++, b ++ ;int p = lca(a, b);vector<int> s(27);for (int j = 1; j <= 26; j ++ )s[j] += cnt[a][j] + cnt[b][j] - cnt[p][j] * 2;int sum = 0, maxv = 0;for (int j = 1; j <= 26; j ++ ) {maxv = max(maxv, s[j]);sum += s[j];}ans[i] = sum - maxv;}return ans;}
};

时间复杂度: O ( m l o g n ) O(mlogn) O(mlogn)

这篇关于LC 2846. 边权重均等查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/651383

相关文章

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

查询Oracle数据库表是否被锁的实现方式

《查询Oracle数据库表是否被锁的实现方式》本文介绍了查询Oracle数据库表是否被锁的方法,包括查询锁表的会话、人员信息,根据object_id查询表名,以及根据会话ID查询和停止本地进程,同时,... 目录查询oracle数据库表是否被锁1、查询锁表的会话、人员等信息2、根据 object_id查询被

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3