Ensenso手眼标定cpp实现

2024-01-27 13:48
文章标签 实现 标定 cpp 手眼 ensenso

本文主要是介绍Ensenso手眼标定cpp实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理Ensenso SDK有介绍,这里是代码实现的简易版本。

需要修改serial number ,我的是194224。

使用方法:

将halcon标定板固定在机械臂上,运行代码,移动机械臂,输入机械臂上标定板当前的姿态(重复次数大于5即可)

成功的话,相机参数的link就已经被修改了,此时的坐标系统一为机械臂基座标系。

目前机械臂的移动是我手动控制的,也可以固定某些点输入,自动运行。

有问题的话,可以加我QQ:1441405602

#include <stdio.h>#include "nxLib.h"
#include <ros/ros.h>
#include <tf2_ros/transform_broadcaster.h>
#include <tf2_geometry_msgs/tf2_geometry_msgs.h> // Needed for conversion from geometry_msgs to tf2::Transform
#include <geometry_msgs/Pose.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/TransformStamped.h>
#include <string>
#include <tf2_ros/buffer.h>
#include <tf2/LinearMath/Transform.h>#include <tf/transform_listener.h>
#include <tf/transform_broadcaster.h>#include <iostream>
using namespace ros;
using namespace std;
bool poseIsValid(const tf::Pose& pose)
{auto origin = pose.getOrigin();if (std::isnan(origin.x()) || std::isnan(origin.y()) || std::isnan(origin.z())){return false;}auto rotation = pose.getRotation();if (std::isnan(rotation.getAngle())){return false;}auto rotationAxis = rotation.getAxis();if (std::isnan(rotationAxis.x()) || std::isnan(rotationAxis.y()) || std::isnan(rotationAxis.z())){return false;}return true;
}void writePoseToNxLib(tf::Pose const& pose, NxLibItem const& node)
{// Initialize the node to be empty. This is necessary, because there is a bug in some versions of the NxLib that// overwrites the whole transformation node with an identity transformation as soon as a new node in /Links gets// created.node.setNull();if (poseIsValid(pose)){auto origin = pose.getOrigin();node[itmTranslation][0] = origin.x() * 1000;  // ROS transformation is in// meters, NxLib expects it to// be in millimeters.node[itmTranslation][1] = origin.y() * 1000;node[itmTranslation][2] = origin.z() * 1000;auto rotation = pose.getRotation();node[itmRotation][itmAngle] = rotation.getAngle();auto rotationAxis = rotation.getAxis();node[itmRotation][itmAxis][0] = rotationAxis.x();node[itmRotation][itmAxis][1] = rotationAxis.y();node[itmRotation][itmAxis][2] = rotationAxis.z();}else{// Use an identity transformation as a reasonable default value.node[itmTranslation][0] = 0;node[itmTranslation][1] = 0;node[itmTranslation][2] = 0;node[itmRotation][itmAngle] = 0;node[itmRotation][itmAxis][0] = 1;node[itmRotation][itmAxis][1] = 0;node[itmRotation][itmAxis][2] = 0;}
}int main(void)
{try {// Initialize NxLib and enumerate camerasnxLibInitialize(true);// Reference to the first camera in the node BySerialNoNxLibItem root;NxLibItem camera = root[itmCameras][itmBySerialNo][0];// Open the EnsensoNxLibCommand open(cmdOpen);open.parameters()[itmCameras] = camera[itmSerialNumber].asString();open.execute();// We assume that the camera with the serial "1234" is already open. See here for information on how this// can be done.// Move your robot into a suitable starting position here. Make sure that the pattern can be seen from// the selected position.//tf::StampedTransform robotPose;// std::vector<tf::Pose> handEyeCalibrationRobotPoses;vector<tf::Transform> robotPoses;geometry_msgs::Pose robot_pose;// Set the pattern's grid spacing so that we don't need to decode the data from the pattern later. You// will need to adapt this line to the size of the calibration pattern that you are using.NxLibItem()[itmParameters][itmPattern][itmGridSpacing] = 20;// Discard any pattern observations that might already be in the pattern buffer.NxLibCommand(cmdDiscardPatterns).execute();// Turn off the camera's projector so that we can observe the calibration pattern.NxLibItem()[itmCameras]["194224"][itmParameters][itmCapture][itmProjector] = false;NxLibItem()[itmCameras]["194224"][itmParameters][itmCapture][itmFrontLight] = true;// We will observe the pattern 20 times. You can adapt this number depending on how accurate you need the// calibration to be.for (int i = 0; i < 10; i++) {// Move your robot to a new position from which the pattern can be seen. It might be a good idea to// choose these positions randomly.cout<<"Please enter x:";cin>>robot_pose.position.x;cout<<"Please enter y:";cin>>robot_pose.position.y;cout<<"Please enter z:";cin>>robot_pose.position.z;cout<<"Please enter rw:";cin>>robot_pose.orientation.w;cout<<"Please enter rx:";cin>>robot_pose.orientation.x;cout<<"Please enter ry:";cin>>robot_pose.orientation.y;cout<<"Please enter rz:";cin>>robot_pose.orientation.z;tf::Pose tfPose;tf::poseMsgToTF(robot_pose, tfPose);robotPoses.push_back(tfPose);// Make sure that the robot is not moving anymore. You might want to wait for a few seconds to avoid// any oscillations.sleep(2);// Observe the calibration pattern and store the observation in the pattern buffer.NxLibCommand capture(cmdCapture);capture.parameters()[itmCameras] = "194224";capture.execute();bool foundPattern = false;try {NxLibCommand collectPattern(cmdCollectPattern);collectPattern.parameters()[itmCameras] = "194224";collectPattern.execute();foundPattern = true;} catch (NxLibException& e) {printf("An NxLib API error with code %d (%s) occurred while accessing item %s.\n", e.getErrorCode(),e.getErrorText().c_str(), e.getItemPath().c_str());}if (foundPattern) {// We actually found a pattern. Get the current pose of your robot (from which the pattern was// observed) and store it somewhere.cout<< i <<"success"<<endl;} else {// The calibration pattern could not be found in the camera image. When your robot poses are// selected randomly, you might want to choose a different one.}}// You can insert a recalibration here, as you already captured stereo patterns anyway. See here for a// code snippet that does a recalibration.// We collected enough patterns and can start the calibration.NxLibCommand calibrateHandEye(cmdCalibrateHandEye);calibrateHandEye.parameters()[itmSetup] = valFixed; // Or "valMoving" when your have a moving setup.// At this point, you need to put your stored robot poses into the command's Transformations parameter.//calibrateHandEye.parameters()[itmTransformations] = robotPoses;for (size_t i = 0; i < robotPoses.size(); i++){writePoseToNxLib(robotPoses[i], calibrateHandEye.parameters()[itmTransformations][i]);}// Start the calibration. Note that this might take a few minutes if you did a lot of pattern observations.calibrateHandEye.execute();// Store the new calibration to the camera's EEPROM.NxLibCommand storeCalibration(cmdStoreCalibration);storeCalibration.parameters()[itmCameras] = "194224";storeCalibration.parameters()[itmLink] = true;storeCalibration.execute();// Close & finalizeNxLibCommand close(cmdClose);close.execute();} catch (NxLibException& e) { // Display NxLib API exceptions, if anyprintf("An NxLib API error with code %d (%s) occurred while accessing item %s.\n", e.getErrorCode(),e.getErrorText().c_str(), e.getItemPath().c_str());if (e.getErrorCode() == NxLibExecutionFailed)printf("/Execute:\n%s\n", NxLibItem(itmExecute).asJson(true).c_str());} nxLibFinalize();return 0;
}

 

 

这篇关于Ensenso手眼标定cpp实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/650423

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、