本文主要是介绍Ensenso手眼标定cpp实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
原理Ensenso SDK有介绍,这里是代码实现的简易版本。
需要修改serial number ,我的是194224。
使用方法:
将halcon标定板固定在机械臂上,运行代码,移动机械臂,输入机械臂上标定板当前的姿态(重复次数大于5即可)
成功的话,相机参数的link就已经被修改了,此时的坐标系统一为机械臂基座标系。
目前机械臂的移动是我手动控制的,也可以固定某些点输入,自动运行。
有问题的话,可以加我QQ:1441405602
#include <stdio.h>#include "nxLib.h"
#include <ros/ros.h>
#include <tf2_ros/transform_broadcaster.h>
#include <tf2_geometry_msgs/tf2_geometry_msgs.h> // Needed for conversion from geometry_msgs to tf2::Transform
#include <geometry_msgs/Pose.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/TransformStamped.h>
#include <string>
#include <tf2_ros/buffer.h>
#include <tf2/LinearMath/Transform.h>#include <tf/transform_listener.h>
#include <tf/transform_broadcaster.h>#include <iostream>
using namespace ros;
using namespace std;
bool poseIsValid(const tf::Pose& pose)
{auto origin = pose.getOrigin();if (std::isnan(origin.x()) || std::isnan(origin.y()) || std::isnan(origin.z())){return false;}auto rotation = pose.getRotation();if (std::isnan(rotation.getAngle())){return false;}auto rotationAxis = rotation.getAxis();if (std::isnan(rotationAxis.x()) || std::isnan(rotationAxis.y()) || std::isnan(rotationAxis.z())){return false;}return true;
}void writePoseToNxLib(tf::Pose const& pose, NxLibItem const& node)
{// Initialize the node to be empty. This is necessary, because there is a bug in some versions of the NxLib that// overwrites the whole transformation node with an identity transformation as soon as a new node in /Links gets// created.node.setNull();if (poseIsValid(pose)){auto origin = pose.getOrigin();node[itmTranslation][0] = origin.x() * 1000; // ROS transformation is in// meters, NxLib expects it to// be in millimeters.node[itmTranslation][1] = origin.y() * 1000;node[itmTranslation][2] = origin.z() * 1000;auto rotation = pose.getRotation();node[itmRotation][itmAngle] = rotation.getAngle();auto rotationAxis = rotation.getAxis();node[itmRotation][itmAxis][0] = rotationAxis.x();node[itmRotation][itmAxis][1] = rotationAxis.y();node[itmRotation][itmAxis][2] = rotationAxis.z();}else{// Use an identity transformation as a reasonable default value.node[itmTranslation][0] = 0;node[itmTranslation][1] = 0;node[itmTranslation][2] = 0;node[itmRotation][itmAngle] = 0;node[itmRotation][itmAxis][0] = 1;node[itmRotation][itmAxis][1] = 0;node[itmRotation][itmAxis][2] = 0;}
}int main(void)
{try {// Initialize NxLib and enumerate camerasnxLibInitialize(true);// Reference to the first camera in the node BySerialNoNxLibItem root;NxLibItem camera = root[itmCameras][itmBySerialNo][0];// Open the EnsensoNxLibCommand open(cmdOpen);open.parameters()[itmCameras] = camera[itmSerialNumber].asString();open.execute();// We assume that the camera with the serial "1234" is already open. See here for information on how this// can be done.// Move your robot into a suitable starting position here. Make sure that the pattern can be seen from// the selected position.//tf::StampedTransform robotPose;// std::vector<tf::Pose> handEyeCalibrationRobotPoses;vector<tf::Transform> robotPoses;geometry_msgs::Pose robot_pose;// Set the pattern's grid spacing so that we don't need to decode the data from the pattern later. You// will need to adapt this line to the size of the calibration pattern that you are using.NxLibItem()[itmParameters][itmPattern][itmGridSpacing] = 20;// Discard any pattern observations that might already be in the pattern buffer.NxLibCommand(cmdDiscardPatterns).execute();// Turn off the camera's projector so that we can observe the calibration pattern.NxLibItem()[itmCameras]["194224"][itmParameters][itmCapture][itmProjector] = false;NxLibItem()[itmCameras]["194224"][itmParameters][itmCapture][itmFrontLight] = true;// We will observe the pattern 20 times. You can adapt this number depending on how accurate you need the// calibration to be.for (int i = 0; i < 10; i++) {// Move your robot to a new position from which the pattern can be seen. It might be a good idea to// choose these positions randomly.cout<<"Please enter x:";cin>>robot_pose.position.x;cout<<"Please enter y:";cin>>robot_pose.position.y;cout<<"Please enter z:";cin>>robot_pose.position.z;cout<<"Please enter rw:";cin>>robot_pose.orientation.w;cout<<"Please enter rx:";cin>>robot_pose.orientation.x;cout<<"Please enter ry:";cin>>robot_pose.orientation.y;cout<<"Please enter rz:";cin>>robot_pose.orientation.z;tf::Pose tfPose;tf::poseMsgToTF(robot_pose, tfPose);robotPoses.push_back(tfPose);// Make sure that the robot is not moving anymore. You might want to wait for a few seconds to avoid// any oscillations.sleep(2);// Observe the calibration pattern and store the observation in the pattern buffer.NxLibCommand capture(cmdCapture);capture.parameters()[itmCameras] = "194224";capture.execute();bool foundPattern = false;try {NxLibCommand collectPattern(cmdCollectPattern);collectPattern.parameters()[itmCameras] = "194224";collectPattern.execute();foundPattern = true;} catch (NxLibException& e) {printf("An NxLib API error with code %d (%s) occurred while accessing item %s.\n", e.getErrorCode(),e.getErrorText().c_str(), e.getItemPath().c_str());}if (foundPattern) {// We actually found a pattern. Get the current pose of your robot (from which the pattern was// observed) and store it somewhere.cout<< i <<"success"<<endl;} else {// The calibration pattern could not be found in the camera image. When your robot poses are// selected randomly, you might want to choose a different one.}}// You can insert a recalibration here, as you already captured stereo patterns anyway. See here for a// code snippet that does a recalibration.// We collected enough patterns and can start the calibration.NxLibCommand calibrateHandEye(cmdCalibrateHandEye);calibrateHandEye.parameters()[itmSetup] = valFixed; // Or "valMoving" when your have a moving setup.// At this point, you need to put your stored robot poses into the command's Transformations parameter.//calibrateHandEye.parameters()[itmTransformations] = robotPoses;for (size_t i = 0; i < robotPoses.size(); i++){writePoseToNxLib(robotPoses[i], calibrateHandEye.parameters()[itmTransformations][i]);}// Start the calibration. Note that this might take a few minutes if you did a lot of pattern observations.calibrateHandEye.execute();// Store the new calibration to the camera's EEPROM.NxLibCommand storeCalibration(cmdStoreCalibration);storeCalibration.parameters()[itmCameras] = "194224";storeCalibration.parameters()[itmLink] = true;storeCalibration.execute();// Close & finalizeNxLibCommand close(cmdClose);close.execute();} catch (NxLibException& e) { // Display NxLib API exceptions, if anyprintf("An NxLib API error with code %d (%s) occurred while accessing item %s.\n", e.getErrorCode(),e.getErrorText().c_str(), e.getItemPath().c_str());if (e.getErrorCode() == NxLibExecutionFailed)printf("/Execute:\n%s\n", NxLibItem(itmExecute).asJson(true).c_str());} nxLibFinalize();return 0;
}
这篇关于Ensenso手眼标定cpp实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!