Ensenso手眼标定cpp实现

2024-01-27 13:48
文章标签 实现 标定 cpp 手眼 ensenso

本文主要是介绍Ensenso手眼标定cpp实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理Ensenso SDK有介绍,这里是代码实现的简易版本。

需要修改serial number ,我的是194224。

使用方法:

将halcon标定板固定在机械臂上,运行代码,移动机械臂,输入机械臂上标定板当前的姿态(重复次数大于5即可)

成功的话,相机参数的link就已经被修改了,此时的坐标系统一为机械臂基座标系。

目前机械臂的移动是我手动控制的,也可以固定某些点输入,自动运行。

有问题的话,可以加我QQ:1441405602

#include <stdio.h>#include "nxLib.h"
#include <ros/ros.h>
#include <tf2_ros/transform_broadcaster.h>
#include <tf2_geometry_msgs/tf2_geometry_msgs.h> // Needed for conversion from geometry_msgs to tf2::Transform
#include <geometry_msgs/Pose.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/TransformStamped.h>
#include <string>
#include <tf2_ros/buffer.h>
#include <tf2/LinearMath/Transform.h>#include <tf/transform_listener.h>
#include <tf/transform_broadcaster.h>#include <iostream>
using namespace ros;
using namespace std;
bool poseIsValid(const tf::Pose& pose)
{auto origin = pose.getOrigin();if (std::isnan(origin.x()) || std::isnan(origin.y()) || std::isnan(origin.z())){return false;}auto rotation = pose.getRotation();if (std::isnan(rotation.getAngle())){return false;}auto rotationAxis = rotation.getAxis();if (std::isnan(rotationAxis.x()) || std::isnan(rotationAxis.y()) || std::isnan(rotationAxis.z())){return false;}return true;
}void writePoseToNxLib(tf::Pose const& pose, NxLibItem const& node)
{// Initialize the node to be empty. This is necessary, because there is a bug in some versions of the NxLib that// overwrites the whole transformation node with an identity transformation as soon as a new node in /Links gets// created.node.setNull();if (poseIsValid(pose)){auto origin = pose.getOrigin();node[itmTranslation][0] = origin.x() * 1000;  // ROS transformation is in// meters, NxLib expects it to// be in millimeters.node[itmTranslation][1] = origin.y() * 1000;node[itmTranslation][2] = origin.z() * 1000;auto rotation = pose.getRotation();node[itmRotation][itmAngle] = rotation.getAngle();auto rotationAxis = rotation.getAxis();node[itmRotation][itmAxis][0] = rotationAxis.x();node[itmRotation][itmAxis][1] = rotationAxis.y();node[itmRotation][itmAxis][2] = rotationAxis.z();}else{// Use an identity transformation as a reasonable default value.node[itmTranslation][0] = 0;node[itmTranslation][1] = 0;node[itmTranslation][2] = 0;node[itmRotation][itmAngle] = 0;node[itmRotation][itmAxis][0] = 1;node[itmRotation][itmAxis][1] = 0;node[itmRotation][itmAxis][2] = 0;}
}int main(void)
{try {// Initialize NxLib and enumerate camerasnxLibInitialize(true);// Reference to the first camera in the node BySerialNoNxLibItem root;NxLibItem camera = root[itmCameras][itmBySerialNo][0];// Open the EnsensoNxLibCommand open(cmdOpen);open.parameters()[itmCameras] = camera[itmSerialNumber].asString();open.execute();// We assume that the camera with the serial "1234" is already open. See here for information on how this// can be done.// Move your robot into a suitable starting position here. Make sure that the pattern can be seen from// the selected position.//tf::StampedTransform robotPose;// std::vector<tf::Pose> handEyeCalibrationRobotPoses;vector<tf::Transform> robotPoses;geometry_msgs::Pose robot_pose;// Set the pattern's grid spacing so that we don't need to decode the data from the pattern later. You// will need to adapt this line to the size of the calibration pattern that you are using.NxLibItem()[itmParameters][itmPattern][itmGridSpacing] = 20;// Discard any pattern observations that might already be in the pattern buffer.NxLibCommand(cmdDiscardPatterns).execute();// Turn off the camera's projector so that we can observe the calibration pattern.NxLibItem()[itmCameras]["194224"][itmParameters][itmCapture][itmProjector] = false;NxLibItem()[itmCameras]["194224"][itmParameters][itmCapture][itmFrontLight] = true;// We will observe the pattern 20 times. You can adapt this number depending on how accurate you need the// calibration to be.for (int i = 0; i < 10; i++) {// Move your robot to a new position from which the pattern can be seen. It might be a good idea to// choose these positions randomly.cout<<"Please enter x:";cin>>robot_pose.position.x;cout<<"Please enter y:";cin>>robot_pose.position.y;cout<<"Please enter z:";cin>>robot_pose.position.z;cout<<"Please enter rw:";cin>>robot_pose.orientation.w;cout<<"Please enter rx:";cin>>robot_pose.orientation.x;cout<<"Please enter ry:";cin>>robot_pose.orientation.y;cout<<"Please enter rz:";cin>>robot_pose.orientation.z;tf::Pose tfPose;tf::poseMsgToTF(robot_pose, tfPose);robotPoses.push_back(tfPose);// Make sure that the robot is not moving anymore. You might want to wait for a few seconds to avoid// any oscillations.sleep(2);// Observe the calibration pattern and store the observation in the pattern buffer.NxLibCommand capture(cmdCapture);capture.parameters()[itmCameras] = "194224";capture.execute();bool foundPattern = false;try {NxLibCommand collectPattern(cmdCollectPattern);collectPattern.parameters()[itmCameras] = "194224";collectPattern.execute();foundPattern = true;} catch (NxLibException& e) {printf("An NxLib API error with code %d (%s) occurred while accessing item %s.\n", e.getErrorCode(),e.getErrorText().c_str(), e.getItemPath().c_str());}if (foundPattern) {// We actually found a pattern. Get the current pose of your robot (from which the pattern was// observed) and store it somewhere.cout<< i <<"success"<<endl;} else {// The calibration pattern could not be found in the camera image. When your robot poses are// selected randomly, you might want to choose a different one.}}// You can insert a recalibration here, as you already captured stereo patterns anyway. See here for a// code snippet that does a recalibration.// We collected enough patterns and can start the calibration.NxLibCommand calibrateHandEye(cmdCalibrateHandEye);calibrateHandEye.parameters()[itmSetup] = valFixed; // Or "valMoving" when your have a moving setup.// At this point, you need to put your stored robot poses into the command's Transformations parameter.//calibrateHandEye.parameters()[itmTransformations] = robotPoses;for (size_t i = 0; i < robotPoses.size(); i++){writePoseToNxLib(robotPoses[i], calibrateHandEye.parameters()[itmTransformations][i]);}// Start the calibration. Note that this might take a few minutes if you did a lot of pattern observations.calibrateHandEye.execute();// Store the new calibration to the camera's EEPROM.NxLibCommand storeCalibration(cmdStoreCalibration);storeCalibration.parameters()[itmCameras] = "194224";storeCalibration.parameters()[itmLink] = true;storeCalibration.execute();// Close & finalizeNxLibCommand close(cmdClose);close.execute();} catch (NxLibException& e) { // Display NxLib API exceptions, if anyprintf("An NxLib API error with code %d (%s) occurred while accessing item %s.\n", e.getErrorCode(),e.getErrorText().c_str(), e.getItemPath().c_str());if (e.getErrorCode() == NxLibExecutionFailed)printf("/Execute:\n%s\n", NxLibItem(itmExecute).asJson(true).c_str());} nxLibFinalize();return 0;
}

 

 

这篇关于Ensenso手眼标定cpp实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/650423

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja