Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践

2024-01-27 06:12

本文主要是介绍Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:在某个嵌入式上的图像处理项目功能开发告一段落,进入性能优化阶段。尝试从多线程上对图像处理过程进行加速。经过初步调研后,可以从OPENMP,TBB这两块进行加速,当前项目中有些算法已采用多线程加速,这次主要是对比以上两个加速模块与多线程加速效果的对比。现在PC上实验,然后再移植相关库。

环境准备:WIN11 ,VS2022 ,Debug 64
1、编译OPENCV。
经测试,编译过程是否选择TBB,MP相关选项对加载对应库和使用不影响。
2、安装TBB。(https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html)
VS配置之打开相关模块。打开TBB支持
打开openmp支持

对比过程:实验对比的对象包括:
1、基础FOR循环。
2、多线程。
3、原数据相同的TBB。
4、原数据独立的TBB。
5、原数据相同的OPENMP;
6、原数据独立的OPENMP;
测试数据为960*600的图像,测试内容为对该图进行大尺寸滤波操作。

测试代码:

#include <fstream>
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <omp.h>
#include <future>
#include <thread>
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>int main()
{const static int iCnt = 50;//循环次数Mat imori = imread("ori.png");cvtColor(imori, imori, COLOR_BGR2GRAY);Mat imoriMt, imoriMP, imoriTbb, imoriAMP[iCnt], imoriATBB[iCnt];imori.copyTo(imoriMt);imori.copyTo(imoriMP);imori.copyTo(imoriTbb);for (size_t i = 0; i < iCnt; i++){imori.copyTo(imoriAMP[i]);imori.copyTo(imoriATBB[i]);}Mat imRslt[iCnt], imRsltMt[iCnt], imRsltMP[iCnt], imRsltAMP[iCnt],imRsltTbb[iCnt], imRsltATBB[iCnt];std::vector<std::future<void>> vFutures(iCnt);double start1 = omp_get_wtime();{for (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(25, 25, CV_32F);filter2D(imori, imRslt[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double end1 = omp_get_wtime();cout << " cv Normal Time = " << (end1 - start1) << endl;double startMt = omp_get_wtime();int i = 0;for (auto iter = vFutures.begin(); iter != vFutures.end(); iter++, i++)*iter = std::async([](cv::Mat* imRslt, Mat imori, int i) {Mat kealMN = Mat::ones(33, 33, CV_32F); filter2D(imori, imRslt[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101); }, imRsltMt, imoriMt, i);for (auto iter = vFutures.begin(); iter != vFutures.end(); iter++)iter->get();double endMt = omp_get_wtime();cout << " cv MThread Time = " << (endMt - startMt) << endl;double startMP = omp_get_wtime();
#pragma omp parallel num_threads(iCnt){
#pragma omp forfor (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriMP, imRsltMP[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double endMP = omp_get_wtime();cout << " cv MP Time = " << (endMP - startMP) << endl;double startAMP = omp_get_wtime();
#pragma omp parallel num_threads(iCnt){
#pragma omp forfor (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriAMP[i], imRsltAMP[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double endAMP = omp_get_wtime();cout << " cv AMP Time = " << (endAMP - startAMP) << endl;double startTbb = omp_get_wtime();tbb::parallel_for(tbb::blocked_range<size_t>(0, iCnt),[&](tbb::blocked_range<size_t> r) {for (size_t i = r.begin(); i < r.end(); i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriTbb, imRsltTbb[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}});double endTbb = omp_get_wtime();cout << " cv Tbb Time = " << (endTbb - startTbb) << endl;double startATbb = omp_get_wtime();tbb::parallel_for(tbb::blocked_range<size_t>(0, iCnt),[&](tbb::blocked_range<size_t> r) {for (size_t i = r.begin(); i < r.end(); i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriATBB[i], imRsltATBB[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}});double endATbb = omp_get_wtime();cout << " cv Atbb Time = " << (endATbb - startATbb) << endl;getchar();return 0;}

实验结果:
处理结果

实验结论:
1、OPENMP,TBB可以有效对并行处理进行加速,其效果与多线程处理基本持平。
2、OPENMP,TBB的优势在于代码编写相对简单,也不用考虑线程数的设置。
3、OPENMP,TBB的基础数据独立与否,对测试速度基本不影响(待定,有的同学说会导致各线程等待访问同一数据,引起耗时增加),也可能和PC的性能较好有关。但尽量去保证数据独立性,避免处理结果错误。

ARM实践 TODO

这篇关于Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649295

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解