Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践

2024-01-27 06:12

本文主要是介绍Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:在某个嵌入式上的图像处理项目功能开发告一段落,进入性能优化阶段。尝试从多线程上对图像处理过程进行加速。经过初步调研后,可以从OPENMP,TBB这两块进行加速,当前项目中有些算法已采用多线程加速,这次主要是对比以上两个加速模块与多线程加速效果的对比。现在PC上实验,然后再移植相关库。

环境准备:WIN11 ,VS2022 ,Debug 64
1、编译OPENCV。
经测试,编译过程是否选择TBB,MP相关选项对加载对应库和使用不影响。
2、安装TBB。(https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html)
VS配置之打开相关模块。打开TBB支持
打开openmp支持

对比过程:实验对比的对象包括:
1、基础FOR循环。
2、多线程。
3、原数据相同的TBB。
4、原数据独立的TBB。
5、原数据相同的OPENMP;
6、原数据独立的OPENMP;
测试数据为960*600的图像,测试内容为对该图进行大尺寸滤波操作。

测试代码:

#include <fstream>
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <omp.h>
#include <future>
#include <thread>
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>int main()
{const static int iCnt = 50;//循环次数Mat imori = imread("ori.png");cvtColor(imori, imori, COLOR_BGR2GRAY);Mat imoriMt, imoriMP, imoriTbb, imoriAMP[iCnt], imoriATBB[iCnt];imori.copyTo(imoriMt);imori.copyTo(imoriMP);imori.copyTo(imoriTbb);for (size_t i = 0; i < iCnt; i++){imori.copyTo(imoriAMP[i]);imori.copyTo(imoriATBB[i]);}Mat imRslt[iCnt], imRsltMt[iCnt], imRsltMP[iCnt], imRsltAMP[iCnt],imRsltTbb[iCnt], imRsltATBB[iCnt];std::vector<std::future<void>> vFutures(iCnt);double start1 = omp_get_wtime();{for (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(25, 25, CV_32F);filter2D(imori, imRslt[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double end1 = omp_get_wtime();cout << " cv Normal Time = " << (end1 - start1) << endl;double startMt = omp_get_wtime();int i = 0;for (auto iter = vFutures.begin(); iter != vFutures.end(); iter++, i++)*iter = std::async([](cv::Mat* imRslt, Mat imori, int i) {Mat kealMN = Mat::ones(33, 33, CV_32F); filter2D(imori, imRslt[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101); }, imRsltMt, imoriMt, i);for (auto iter = vFutures.begin(); iter != vFutures.end(); iter++)iter->get();double endMt = omp_get_wtime();cout << " cv MThread Time = " << (endMt - startMt) << endl;double startMP = omp_get_wtime();
#pragma omp parallel num_threads(iCnt){
#pragma omp forfor (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriMP, imRsltMP[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double endMP = omp_get_wtime();cout << " cv MP Time = " << (endMP - startMP) << endl;double startAMP = omp_get_wtime();
#pragma omp parallel num_threads(iCnt){
#pragma omp forfor (int i = 0; i < iCnt; i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriAMP[i], imRsltAMP[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}}double endAMP = omp_get_wtime();cout << " cv AMP Time = " << (endAMP - startAMP) << endl;double startTbb = omp_get_wtime();tbb::parallel_for(tbb::blocked_range<size_t>(0, iCnt),[&](tbb::blocked_range<size_t> r) {for (size_t i = r.begin(); i < r.end(); i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriTbb, imRsltTbb[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}});double endTbb = omp_get_wtime();cout << " cv Tbb Time = " << (endTbb - startTbb) << endl;double startATbb = omp_get_wtime();tbb::parallel_for(tbb::blocked_range<size_t>(0, iCnt),[&](tbb::blocked_range<size_t> r) {for (size_t i = r.begin(); i < r.end(); i++){Mat kealMN = Mat::ones(33, 33, CV_32F);filter2D(imoriATBB[i], imRsltATBB[i], CV_32F, kealMN, Point(-1, -1), 0, BORDER_REFLECT_101);}});double endATbb = omp_get_wtime();cout << " cv Atbb Time = " << (endATbb - startATbb) << endl;getchar();return 0;}

实验结果:
处理结果

实验结论:
1、OPENMP,TBB可以有效对并行处理进行加速,其效果与多线程处理基本持平。
2、OPENMP,TBB的优势在于代码编写相对简单,也不用考虑线程数的设置。
3、OPENMP,TBB的基础数据独立与否,对测试速度基本不影响(待定,有的同学说会导致各线程等待访问同一数据,引起耗时增加),也可能和PC的性能较好有关。但尽量去保证数据独立性,避免处理结果错误。

ARM实践 TODO

这篇关于Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649295

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象