Matlab|含风电-光伏-光热电站电力系统N-k安全优化调度模型

本文主要是介绍Matlab|含风电-光伏-光热电站电力系统N-k安全优化调度模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

程序算例

程序模型

程序亮点

2 部分程序

3 部分结果

4 下载链接


主要内容

该程序参考《光热电站促进风电消纳的电力系统优化调度》光热电站模型,主要做的是考虑N-k安全约束的含义风电-光伏-光热电站的电力系统优化调度模型,从而体现光热电站在调度灵活性以及经济性方面的优势。同时代码还考虑了光热电站对风光消纳的作用,对比了含义光热电站和不含光热电站下的弃风弃光问题,同时还对比了考虑N-k约束下的调度策略区别。以14节点和118节点算例为例,对模型进行了系统性的测试,复现效果良好,是学习N-k约束以及光热电站调度的必备程序!程序采用matlab+cplex(mosek/gurobi)进行求解,可以选择已经安装的求解器进行求解。

  • 程序算例

程序对于118节点系统采用了四个算例进行对比,14节点系统有3种算例对比,并增加了弃风量的对比程序。

  • 程序模型

  • 程序亮点

  1. 采用光热电站模型,也是最近研究比较热的一个方向。
  2. 采用转移分布因子矩阵处理潮流问题,这也是很多文献中都采用的方法。​

部分程序

clc; clear; close all; % 关闭所有已打开的绘图窗口
%% 参数设定
NT = 24; % 时间范围
CoeffReseve_load = 0.03; 
CoeffReserve_VRE = 0.05; 
yita_TES = 0.98;  
yita_PB = 0.415;  
% 文章里Table 2的数据
Capacity_TES_CSP = 0; 
initial_TES_t0 = 0.5;  
initial_TES_t1 = 0.78;
TES_initial = 0.5;         
beta_Load = 3*10e3;  mpc = case14_1; % 载入数据 matpower 数据格式
%% 有功负荷 24h所有节点总的
%    mpc.load = [
%        2842.42  3020.2  3296.96  3444.44  3607.07  3891.91  4070.7  4295.95  4476.76  4661.61  4859.59  5077.77  ...
%        4717.17  4519.19  4301.01  3995.95  3703.03  3806.06  4037.37  4063.63  3721.21  3245.45  3097.97  2827.27
%    ]/6.3; 
​mpc.load = [683.42  792.2  896.96  1044.44  1087.07  1121.91  1200.7  1235.95  1326.76  1461.61  1489.59  1577.77  ...1417.17  1219.19  1101.01  1075.95  903.03  1186.06  1237.37  1463.63  1221.21  1005.45  827.97  807.27]/2; 
​
​mpc.P_RE = [0.00   0.00   0.00   0.00   0.00   0.00   15.76   43.17   82.35   109.44   122.55   146.10   ...% PV126.66   86.05   60.05   52.82   25.78   4.28   0.00   0.00   0.00   0.00   0.00   0.00  100.26   133.95   147.28   134.11   170.52   159.44   138.55   72.83   58.83   73.37   79.90   80.54 ...  % Wind91.96   101.68   121.49   122.93   133.11   162.44   130.95   133.25   151.26   139.33   120.60   90.33]*1; % 可再生能源 24小时数据(实际发电量)
%% 电网相关名称baseMVA = mpc.baseMVA;bus = mpc.bus;gen = mpc.gen;branch = mpc.branch;gencost = mpc.gencost;RE = mpc.RE;CSP = mpc.CSP;P_RE = mpc.P_RE;
​
N = length(bus(:,1));      % 网络中所有节点数
N_Br = length(branch(:,1));% 线路数
N_Gen = length(gen(:,1));  % 火电发电机组数
N_RE = length(RE(:,1));    % 可再生能源节点机组数
N_CSP = length(CSP(:,1));  % CSP发电站数
​
% 常规机组相关数据提取, 取数据矩阵中的列向量 和功率有功的项,均需标幺值化,以便运算和求解
P_Gen_max = gen(:,9)/baseMVA; 
P_Gen_min = gen(:,10)/baseMVA; 
type_Gen = gen(:,22); 
P_Gen_up = gen(:,23) /baseMVA;  
P_Gen_down = gen(:,24) /baseMVA;
T_Gen_min_on = gen(:,25); 
T_Gen_min_off = gen(:,26); 
c_ST_g = gen(:,28);
c_G_g = gen(:,30); 
​
% CSP机组相关数据提取
P_CSP_max = CSP(:,9)/baseMVA; 
P_CSP_min = CSP(:,10)/baseMVA; 
P_CSP_up = CSP(:,23)/baseMVA;   
P_CSP_down = CSP(:,24)/baseMVA; 
T_CSP_min_on = CSP(:,25); 
T_CSP_min_off = CSP(:,26);
c_CSP_g = CSP(:,30);       
​
PtCSP_fore = [ % 可用的太阳能热功率向量 0.00   0.00   0.00   0.00   0.00   0.00   190.57   390.57   790.57 990.57   1390.57   1891.03 ...2111.64   2200.92   2202.36   2118.26   1895.37   1408.35   0.00   0.00   0.00   0.00   0.00   0.00 ]/20;
PtCSP_fore = PtCSP_fore/baseMVA; 
P_RE = P_RE/baseMVA; % 可再生能源PV WT机组出力
​
beta_Load = beta_Load*baseMVA^2; % $/MWh -> $/p.u.
​
M_bus_G = zeros(N,N_Gen); % 发电机机组-索引矩阵
for row = 1:Nif abs(find(mpc.gen(:,1) == row)) > 0  % 发电机节点号 与 行号对应M_bus_G(row,find(mpc.gen(:,1) == row)) = 1; % M_bus_G相应处置1end
end
​
M_bus_RE = zeros(N,N_RE); % 可再生能源机组-索引矩阵
for row = 1:Nif abs(find(mpc.RE(:,1) == row))>0M_bus_RE(row,find(mpc.RE(:,1) == row)) = 1;end
end
​
M_bus_CSP = zeros(N,N_CSP); % CSP机组-索引矩阵
for row = 1:Nif abs(find(mpc.CSP(:,1) == row))>0M_bus_CSP(row,find(mpc.CSP(:,1) == row)) = 1;end
end
GSDF = makePTDF(mpc); % 发电转移分布因子矩阵,表征节点注入功率在全网络的分布
​
%% 负荷矩阵数据,按照 算例数据mpc.bus(:,3) 中各节点负荷的比例分配PD = bus(:,3)/baseMVA; P_factor = PD/sum(PD);P_sum = mpc.load/baseMVA; PD = P_factor*P_sum;      
​
%% 决策变量命名PG_G = sdpvar(N_Gen,NT,'full');  PG_RE = sdpvar(N_RE,NT,'full');   % (风光并网量)PG_CSP = sdpvar(N_CSP,NT,'full'); PC_Load = sdpvar(N,NT,'full');   onoff_gen = binvar(N_Gen,NT,'full');onoff_CSP = binvar(N_CSP,NT,'full'); Branch = sdpvar(N_Br,NT,'full');   Cost_StartUp  = sdpvar(N_Gen,NT-1,'full');Pt_TES_charge = sdpvar(N_CSP,NT,'full');  Pt_TES_discharge= sdpvar(N_CSP,NT,'full');Et_TES = sdpvar(N_CSP,NT,'full');         %% 约束条件列写   Cons = [];for t = 1:NTif t >= 2 % type(1-水电, 2-火电机组)for i = 1:N_Gen % 火电机组-最小启/停时间约束 式(8-9)if (type_Gen(i,1)==2) || (type_Gen(i,1)==5) for tao = t + 1:min(t+T_Gen_min_on(i,1)-1,NT)   Cons = [Cons, onoff_gen(i,t)-onoff_gen(i,t-1) <= onoff_gen(i,tao)];endfor tao = t + 1:min(t+T_Gen_min_off(i,1)-1,NT) Cons = [Cons, onoff_gen(i,t-1)-onoff_gen(i,t) <= 1-onoff_gen(i,tao)];endendendfor i = 1:N_CSP  for tao = t+1:min(t+T_CSP_min_on(i,1)-1,NT)Cons = [Cons, onoff_CSP(i,t)-onoff_CSP(i,t-1) <= onoff_CSP(i,tao)]; % CSP机组最小启/停时间约束endfor tao = t+1:min(t+T_CSP_min_off(i,1)-1,NT)Cons = [Cons, onoff_CSP(i,t-1)-onoff_CSP(i,t) <= 1-onoff_CSP(i,tao)];endendend if t >= 2 % 火电机组 爬坡约束 式(6-7)Cons = [Cons,  PG_G(:,t) - PG_G(:,t-1) <= ...onoff_gen(:,t-1).* P_Gen_up*60 + ... (onoff_gen(:,t)-onoff_gen(:,t-1)) .* P_Gen_min + ... (1-onoff_gen(:,t)) .* P_Gen_max];  Cons = [Cons, -PG_G(:,t) + PG_G(:,t-1) <= ...onoff_gen(:,t) .* P_Gen_down*60 + ...(onoff_gen(:,t-1)-onoff_gen(:,t)) .* P_Gen_min + ...  (1-onoff_gen(:,t-1)) .* P_Gen_max];% CSP 机组 爬坡约束 式(6-7)Cons = [Cons,  PG_CSP(:,t) - PG_CSP(:,t-1) <= ...onoff_CSP(:,t-1).* P_CSP_up*60 + ... %  (onoff_CSP(:,t)-onoff_CSP(:,t-1)) .* P_CSP_min + ...(1-onoff_CSP(:,t)) .* P_CSP_max]; Cons = [Cons, -PG_CSP(:,t) + PG_CSP(:,t-1) <= onoff_CSP(:,t) .* P_CSP_down*60 + ...  (onoff_CSP(:,t-1)-onoff_CSP(:,t)) .* P_CSP_min + ...  (1-onoff_CSP(:,t-1)) .* P_CSP_max];endend% 机组出力的上下边界约束-式(3) % t(1-水电,2-火电, 5-燃气发电机组 6-CSP)Ind_2_5 = union(find(type_Gen(:,1) == 2),find(type_Gen(:,1) == 5)); Cons = [Cons, onoff_gen(Ind_2_5,:) .* (P_Gen_min(Ind_2_5,1) * ones(1,NT)) ...    <= PG_G(Ind_2_5,:) <= ...onoff_gen(Ind_2_5,:) .* (P_Gen_max(Ind_2_5,1) * ones(1,NT))];  Cons = [Cons, onoff_CSP.*(P_CSP_min*ones(1,NT)) <= PG_CSP <= onoff_CSP.*(P_CSP_max*ones(1,NT))]; % CSP机组出力-边界约束
%     Cons = [Cons, onoff_CSP == ones(1,24)]; % CSP机组 Cons = [Cons, sum(PG_G,1) + sum(PG_RE,1) + sum(PG_CSP,1) == sum(PD - PC_Load,1)]; % 式(2)Cons = [Cons, Branch == GSDF*(M_bus_G*PG_G + M_bus_RE*PG_RE + M_bus_CSP*PG_CSP - (PD-PC_Load))]; % 
%     Cons = [Cons, -branch(:,6)*ones(1,NT) <= GSDF*(M_bus_G*PG_G+M_bus_RE*PG_RE+M_bus_CSP*PG_CSP-(PD- PC_Load)) <= branch(:,6)*ones(1,NT)]; % Cons = [Cons, -999*ones(N_Br,NT) <= GSDF*(M_bus_G*PG_G+M_bus_RE*PG_RE+M_bus_CSP*PG_CSP-(PD-PC_Load)) <= 999*ones(N_Br,NT)]; % 118系统有186条线路Cons = [Cons, 0 <= PG_RE <= P_RE]; % 可再生出力Cons = [Cons, [60;50;100;80;40]/baseMVA * ones(1,24) <= PG_G ];Cons = [Cons, 0 <= PC_Load <= PD]; % 式(22)    Cons = [Cons, sum(onoff_gen .* (P_Gen_max*ones(1,NT)) - PG_G,1) + ...sum(onoff_CSP .* (P_CSP_max*ones(1,NT)) - PG_CSP,1) >= ...sum(CoeffReseve_load*PD,1) + sum(CoeffReserve_VRE*PG_RE,1) ];Cons = [Cons, Cost_StartUp >= (onoff_gen(:,2:NT) - onoff_gen(:,1:NT-1)) .* (c_ST_g*ones(1,NT-1))]; % 传统机组启动成本Cons = [Cons, Cost_StartUp >= 0];%%%%%% CSP电站运转内部约束 %%%%%%E_TES_max = Capacity_TES_CSP * P_CSP_max; Cons = [Cons, PG_CSP/yita_PB + Pt_TES_charge - Pt_TES_discharge <= PtCSP_fore]; % CSP输出电功率与TES充/放热功率,预测光热功率关系Cons = [Cons, Et_TES(:,2:NT) == Et_TES(:,1:NT-1) + Pt_TES_charge(:,1:NT-1)*yita_TES - Pt_TES_discharge(:,1:NT-1)/yita_TES];Cons = [Cons, Et_TES(:,1) == TES_initial * E_TES_max]; Cons = [Cons, Et_TES(:,1) == Et_TES(:,NT)];          Cons = [Cons, 0 <= Pt_TES_charge    <= Capacity_TES_CSP*ones(N_CSP,NT)]; Cons = [Cons, 0 <= Pt_TES_discharge <= Capacity_TES_CSP*ones(N_CSP,NT)];Cons = [Cons, 0 <= Et_TES <= E_TES_max * ones(1,NT)];
​
%% 目标函数 obj = sum(c_G_g'*PG_G) + sum(c_CSP_g'*PG_CSP) + sum(sum(Cost_StartUp) + beta_Load*sum(sum(PC_Load)) ); % 机组的边际发电成本 + 启动成本 + 负荷削减成本% 运行调度 ops = sdpsettings('solver','cplex'); %  gurobians = optimize(Cons,obj,ops)%% 求解成功后取值PG_G = value(PG_G)  ; PG_RE = value(PG_RE) ;  PG_CSP = value(PG_CSP) ; PC_Load = value(PC_Load) ;   onoff_gen = value(onoff_gen) ; onoff_CSP = value(onoff_CSP) ; Branch = value(Branch) ;   Cost_StartUp  = value(Cost_StartUp);obj = value(obj); % 总成本Pt_TES_charge = value(Pt_TES_charge);   Pt_TES_discharge = value(Pt_TES_discharge); Et_TES = value(Et_TES);                 disp(['IEEE14 不考虑N-k的和无CSP的经济调度情况,运行成本为 ', num2str(obj)])
%% 绘图 
% 已知的相关输入数据figuresubplot(3,1,1)plot(PtCSP_fore * baseMVA,'m-o');title('CSP预测功率值')xlabel('时间(h)');ylabel('功率(MW)');subplot(3,1,2)plot(P_RE(1,:) * baseMVA,'m-o'); hold onplot(P_RE(2,:) * baseMVA,'b-s');title('可再生能源预测出力值')xlabel('时间(h)');ylabel('功率(MW)');legend('光伏','风电')subplot(3,1,3)plot(sum(PD) * baseMVA,'r-v');title('24h负荷值')xlabel('时间(h)');ylabel('功率(MW)');​%    subplot(2,1,2)
%  bar(baseMVA*PG_RE',0.75,'stack'); hold on; % 各PV、Wind机组出力
%    legend('PV','Wind')
%    title('电网中可再生能源机组出力')
%  xlabel('时间(h)');
%    ylabel('功率(MW)');%    figure
%    surf(baseMVA*PC_Load);
%    title('负荷削减量')
%  xlabel('时间(h)');
%    ylabel('功率(MW)');
​
​

部分结果

4 下载链接

这篇关于Matlab|含风电-光伏-光热电站电力系统N-k安全优化调度模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645664

相关文章

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

OpenCompass:大模型测评工具

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factor

模型压缩综述

https://www.cnblogs.com/shixiangwan/p/9015010.html

9 个 GraphQL 安全最佳实践

GraphQL 已被最大的平台采用 - Facebook、Twitter、Github、Pinterest、Walmart - 这些大公司不能在安全性上妥协。但是,尽管 GraphQL 可以成为您的 API 的非常安全的选项,但它并不是开箱即用的。事实恰恰相反:即使是最新手的黑客,所有大门都是敞开的。此外,GraphQL 有自己的一套注意事项,因此如果您来自 REST,您可能会错过一些重要步骤!

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库