TCP segment of a reassembled PDU

2024-01-25 17:38
文章标签 tcp segment pdu reassembled

本文主要是介绍TCP segment of a reassembled PDU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

windows下wireshark抓包经常会出现"TCP segment of a reassembled PDU"提示:

pdu 

 

可通过wireshark的 Edit --> Preferences --> Protocols/TCP --> Allow subdissector to reassemble TCP streams 取消勾选该选项可消除提示:

continue 

 

 

网上大部分转载文章都在争论显示TCP segment of a reassembled PDU的ACK序号是一样的,所以显示提示,其实与ACK没啥关系。

问题的关键在于报文长度2194字节,已超出MTU的1500大小,所以提示TCP segment。

 

MTU Max Transmit Unit,1500,可通过ifconfig查看

MSS Max Segment  Size,1460=1500-20-20

PDU Protocol Data Unit

NIC传输的最大报文长度为1514字节=MTU+Ether=1500+14

 

那问题来了,2194字节报文为什么是正常的,为何没有经过IP分片?

因为现代OS支持网络分载(TSO)功能,由NIC代替CPU实现packet的分段和合并,节省系统资源,让系统处理更多的连接。

TSO TCP Segment Offload

LSO Large Segment Offload

GSO Generic Segment Offload 

LRO Large Receive Offload

RSC Receive Segment Coalescing 

 

发送过程:

Many operating systems and NIC drivers support TCP Segmentation Offload (TSO) aka Large Segment Offload (LSO) aka Generic Segment Offload (GSO). What this means is that the TCP stack sends a chunk of data for the NIC to break up into Maximum Segment Size (MSS) pieces to send on the network. TCP might hand the NIC 16k of data and the NIC will break it into MSS sized bites: 11 segments of 1460 bytes and one segment of the remaining 324 bytes. This offloads the task to the NIC and saves overhead on the host’s resources. It’s a performance thing.

   当TCP协议栈发送大块数据时,由NIC来进行分段。由于适配器硬件完成数据分段的速度比操作系统软件快得多,此功能可能会提高传输性能。此外,适配器使用的 CPU 资源较少。

 

接收过程:

Large Receive Offload (LRO) or Receive Segment Coalescing (RSC). The is the same thing but in reverse. The NIC coalesces TCP segments it receives from a remote host into larger packets before sending them up to the TCP stack. 

   过程与发送相反,NIC会将接收到的数据合并成大的数据包,然后发送至TCP/IP协议栈。如图wireshark工作在NIC和协议栈之间,抓取的是网卡上的数据,此时数据包长度可能大于MTU。

 

location

 

 

参考链接:

http://packetbomb.com/how-can-the-packet-size-be-greater-than-the-mtu/

http://rtodto.net/generic_segmentation_offload_and_wireshark/

https://en.wikipedia.org/wiki/Large_receive_offload 

 

 

 

这篇关于TCP segment of a reassembled PDU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/644058

相关文章

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(

2024.9.8 TCP/IP协议学习笔记

1.所谓的层就是数据交换的深度,电脑点对点就是单层,物理层,加上集线器还是物理层,加上交换机就变成链路层了,有地址表,路由器就到了第三层网络层,每个端口都有一个mac地址 2.A 给 C 发数据包,怎么知道是否要通过路由器转发呢?答案:子网 3.将源 IP 与目的 IP 分别同这个子网掩码进行与运算****,相等则是在一个子网,不相等就是在不同子网 4.A 如何知道,哪个设备是路由器?答案:在 A

图解TCP三次握手|深度解析|为什么是三次

写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端

网络原理之TCP协议(万字详解!!!)

目录 前言 TCP协议段格式 TCP协议相关特性 1.确认应答 2.超时重传 3.连接管理(三次握手、四次挥手) 三次握手(建立TCP连接) 四次挥手(断开连接)  4.滑动窗口 5.流量控制 6.拥塞控制 7.延迟应答 8.捎带应答  9.基于字节流 10.异常情况的处理 小结  前言 在前面,我们已经讲解了有关UDP协议的相关知识,但是在传输层,还有

linux下TCP/IP实现简单聊天程序

可以在同一台电脑上运行,在一个终端上运行服务器端,在一个终端上运行客户端。 服务器端的IP地址要和本地的IP相同,并分配端口号,客户端的默认设置为本地,端口号自动分配。 服务器端: #include <stdio.h>#include <stdlib.h>#include <errno.h>#include <string.h>#include <sys/types.

JAVAEE初阶第七节(中)——物理原理与TCP_IP

系列文章目录 JAVAEE初阶第七节(中)——物理原理与TCP_IP 文章目录 系列文章目录JAVAEE初阶第七节(中)——物理原理与TCP_IP 一.应用层重点协议)1. DNS2 .NAT3. NAT IP转换过程 4 .NAPT5. NAT技术的缺陷6. HTTP/HTTPS7. 自定义协议 二. 传输层重点协议 1 .UDP协议 2.1.1 UDP协议端格式 2.1.2 UD

深入理解TCP通信

这大概是自己博客上面第三次写TCP通信demo了,总是写同样的内容也不太好啊,不过每一次都比前一次进步一点。这次主要使用了VIM编辑工具、gdb调试、wireshirk、netstat查看网络状态。 参考《C++服务器视频教程》、《Unix网络编程》 一、VIM常用命令 vim server.cpp #打开一个文件:w 写入文件:wq 保存并退出:q! 不保存退出显示行号

浏览器工作原理(3)-TCP协议文件如何从服务器到浏览器

浏览器工作原理-TCP协议,文件如何从服务器到浏览器 本周继续学习浏览器工作原理及实践,本次内容来看一下TCP协议确保文件完整的送到至浏览器 First Page 是指页面加载到首次开始绘制的时长,而影响这个性能指标的一个重要原因是网络加载速度,网络传输协议无论使用http还是websocket,都是基于TCP/IP的,所以有必要了解一下TCP/IP,对于web的性能调优和问题定位都有很

应用层简单实现udp / tcp网络通信

一、常见网络接口总结 1、创建 socket 文件描述符 (TCP/UDP, 客户端 + 服务器) int socket(int domain, int type, int protocol); domain:AF_INET:网络通信,AF_LOCAL:本地通信 type:UDP:SOCK_DGRAM,TCP:SOCK_STREAM protocol:协议编号一开始设0 返回值:文件描