使用Stanford NLP工具实现中文命名实体识别

2024-01-25 07:48

本文主要是介绍使用Stanford NLP工具实现中文命名实体识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、     系统配置

Eclipseluna、 JDK 1.8+

二、分词介绍

使用斯坦福大学的分词器,下载地址http://nlp.stanford.edu/software/segmenter.shtml,从上面链接中下载stanford-segmenter-2014-10-26,解压之后,如下图所示



data目录下有两个gz压缩文件,分别是ctb.gz和pku.gz,其中CTB:宾州大学的中国树库训练资料 ,PKU:中国北京大学提供的训练资料。


三、     NER

使用斯坦福大学的NER,下载地址:http://nlp.stanford.edu/software/CRF-NER.shtml,在该页面下分别下载stanford-ner-2014-10-26和stanford-ner-2012-11-11-chinese两个包。

解压后分别可以看到:




同时下载commons-io-2.4.jar、commons-lang3-3.3.2.jar、junit-4.10.jar三个Java包。

四、     中文命名实体识别

新建Java项目,将data目录拷贝到项目根路径下,再把stanford-ner-2012-11-11-chinese解压的内容全部拷贝到classifiers文件夹下,将第三步中的三个Java包以及stanford NER和分词器的Java包都导入classpath中,然后,在:http://nlp.stanford.edu/software/ corenlp.shtml下载stanford-corenlp-full-2014-10-31,将解压之后的stanford-corenlp-3.5.0也加入到classpath之中。将stanfordner中src添加到项目目录下,并添加一下两个代码:


ExtractDemo.java

importedu.stanford.nlp.ie.AbstractSequenceClassifier;

importedu.stanford.nlp.ie.crf.CRFClassifier;

importedu.stanford.nlp.ling.CoreLabel;

 

/*

ClassNameExtractDemo

加载NER模块

*/

   publicclassExtractDemo

   {

   privatestaticAbstractSequenceClassifier<CoreLabel>ner;

   publicExtractDemo()

      {

      InitNer();

      }

   publicvoidInitNer()

   {

      String serializedClassifier ="classifiers/chinese.misc.distsim.crf.ser.gz";//chinese.misc.distsim.crf.ser.gz

      if (ner ==null)

         {

         ner =CRFClassifier.getClassifierNoExceptions(serializedClassifier);

         }

   }

   public StringdoNer(Stringsent)

      {

      returnner.classifyWithInlineXML(sent);

      }

   publicstaticvoid main(Stringargs[])

      {

      String str = "今天下雨,不去打球。";

      ExtractDemoextractDemo =newExtractDemo();    System.out.println(extractDemo.doNer(str));

      System.out.println("Complete!");

      }

}

 

 

ZH_SegDemo.java

 

importjava.io.File;

importjava.io.IOException;

importjava.util.Properties;

importorg.apache.commons.io.FileUtils;

importedu.stanford.nlp.ie.crf.CRFClassifier;

importedu.stanford.nlp.ling.CoreLabel;

/*

* ClassNameZH_SegDemo

* Description 使用StanfordCoreNLP进行中文实体识别

*/

public class ZH_SegDemo {

public staticCRFClassifier<CoreLabel>segmenter;

static {

// 设置一些初始化参数

Propertiesprops = new Properties();

props.setProperty("sighanCorporaDict","data");

props.setProperty("serDictionary","data/dict-chris6.ser.gz");

props.setProperty("inputEncoding","UTF-8");

props.setProperty("sighanPostProcessing","true");

segmenter = newCRFClassifier<CoreLabel>(props);

segmenter.loadClassifierNoExceptions("data/ctb.gz",props);

segmenter.flags.setProperties(props);

}

public static String doSegment(String sent) {

String[] strs =(String[]) segmenter.segmentString(sent).toArray();

StringBufferbuf= new StringBuffer();

for (String s :strs) {

buf.append(s +" ");

}

System.out.println("segmentedres: " + buf.toString());

returnbuf.toString();

}

public staticvoid main(String[] args) {

try {

StringreadFileToString = FileUtils.readFileToString(newFile("IFENG-8.txt"));

StringdoSegment = doSegment(readFileToString);

System.out.println(doSegment);

ExtractDemoextractDemo= new ExtractDemo();

System.out.println(extractDemo.doNer(doSegment));

System.out.println("Complete!");

} catch(IOException e) {

e.printStackTrace();

}

}

}

最后项目结构如下:


运行结果如下:


这篇关于使用Stanford NLP工具实现中文命名实体识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642575

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当