代码随想录算法训练营第十四天|二叉树基础-二叉树迭代-二叉树

本文主要是介绍代码随想录算法训练营第十四天|二叉树基础-二叉树迭代-二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 二叉树基础
    • 二叉树种类
      • 满二叉树
      • 完全二叉树
      • 二叉搜索树
      • 平衡二叉搜索树
    • 二叉树的存储方式
      • 链式存储
      • 顺序存储
    • 二叉树的遍历方式
    • 二叉树的定义
  • 二叉树的递归遍历
    • 144.二叉树的前序遍历
      • 代码:
    • 145.二叉树的后序遍历
      • 代码:
    • 94. 二叉树的中序遍历
      • 代码
  • 二叉树的迭代遍历
    • 前序遍历(迭代法)-中左右->中右左(模拟出入栈)
      • 代码
    • 后序遍历(迭代法)
      • 思路:
      • 代码:
    • 中序遍历(迭代法)
      • 代码:
  • 二叉树的统一迭代法-画图理解增加熟练
      • 前序遍历写法-右左中(反过来)
      • 中序遍历写法-右中左
    • 后序遍历-中右左

二叉树基础

二叉树种类

满二叉树

在这里插入图片描述

完全二叉树

在这里插入图片描述

二叉搜索树

在这里插入图片描述

平衡二叉搜索树

在这里插入图片描述

二叉树的存储方式

链式存储

在这里插入图片描述

顺序存储

在这里插入图片描述

二叉树的遍历方式

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。

这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。

那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:

  1. 深度优先遍历
    • 前序遍历(递归法,迭代法)
    • 中序遍历(递归法,迭代法)
    • 后序遍历(递归法,迭代法)
  2. 广度优先遍历
    • 层次遍历(迭代法)
      在深度优先遍历中:有三个顺序,前中后序遍历, 有同学总分不清这三个顺序,经常搞混,我这里教大家一个技巧。

这里前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。

看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式

  • 前序遍历:中左右
  • 中序遍历:左中右
  • 后序遍历:左右中
    在这里插入图片描述

二叉树的定义

public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) { this.val = val; }TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}
}

二叉树的递归遍历

在这里插入图片描述

144.二叉树的前序遍历

前序遍历,中左右

代码:

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> result = new ArrayList<>();//结果数组preorder(root,result);//开始从根节点遍历return result;}public void preorder(TreeNode root,List<Integer> res){if(root==null){return; //直接返回}res.add(root.val);//添加根节点preorder(root.left,res);preorder(root.right,res);}
}

145.二叉树的后序遍历

左右中

代码:

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();postOrder(root,res);return res;}public void postOrder(TreeNode root,List<Integer> res){if(root==null){return;}postOrder(root.left,res);postOrder(root.right,res);res.add(root.val);}
}

94. 二叉树的中序遍历

左中右

代码

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();inOrder(root,res);return res;}public void inOrder(TreeNode root,List<Integer> res){if(root==null){return;}inOrder(root.left,res);res.add(root.val);inOrder(root.right,res);}
}

二叉树的迭代遍历

前序遍历(迭代法)-中左右->中右左(模拟出入栈)

我们先看一下前序遍历。

前序遍历是中左右,每次先处理的是中间节点,
那么先将根节点放入栈中
然后先将右孩子加入栈,再加入左孩子

为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序

动画如下:
在这里插入图片描述

代码

// 前序遍历顺序:中-左-右,入栈顺序:中-右-左
class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> res=new ArrayList<>();if(root==null){return res;}Stack<TreeNode> stack=new Stack<>();stack.push(root);//加入根节点while(!stack.isEmpty()){//中TreeNode node=stack.pop();//弹出根节点res.add(node.val);//储存根节点的数值//右if(node.right!=null){stack.push(node.right);}//左if(node.left!=null){stack.push(node.left);}}return res;}
}

后序遍历(迭代法)

思路:

前序遍历的数组储存是中左右,那么把函数翻转,则变成数组储存是中右左,再将数组进行翻转,则变成左右中。
在这里插入图片描述

代码:

// 后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果
class Solution {public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Stack<TreeNode> stack=new Stack<>();if(root==null){return res;}stack.push(root);while(!stack.isEmpty()){TreeNode node = stack.pop();res.add(node.val);if(node.left!=null){stack.push(node.left);}if(node.right!=null){stack.push(node.right);}}Collections.reverse(res);//反转数组return res;}
}

中序遍历(迭代法)

为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:

  1. 处理:将元素放进result数组中
  2. 访问:遍历节点
    分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。

那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。

那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素

动画如下:
在这里插入图片描述

代码:

// 中序遍历顺序: 左-中-右 入栈顺序: 左-右
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> result = new ArrayList<>();if (root == null){return result;}Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;while (cur != null || !stack.isEmpty()){if (cur != null){stack.push(cur);cur = cur.left;}else{cur = stack.pop();result.add(cur.val);cur = cur.right;}}return result;}
}

二叉树的统一迭代法-画图理解增加熟练

在这里插入图片描述

前序遍历写法-右左中(反过来)

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> res = new LinkedList<>();Stack<TreeNode> stack = new Stack<>();if(root!=null){stack.push(root);}while(!stack.isEmpty()){TreeNode node=stack.peek();//栈中的第一个节点if(node!=null){stack.pop();//弹出避免重复,下面再将右左中节点添加到栈中if(node.right!=null){//添加右节点,空节点不入栈stack.push(node.right); }if(node.left!=null){//添加左节点,空节点不入栈stack.push(node.left);}stack.push(node);//添加中节点stack.push(null);//中节点还没有处理,添加空节点null做标记}else{stack.pop();//弹出nullnode=stack.peek();//重新取出栈中元素stack.pop();//取出后再弹出res.add(node.val);}}return res;}
}

中序遍历写法-右中左

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Stack<TreeNode> stack = new Stack<>();if(root!=null){//先放入根节点stack.push(root);}while(!stack.isEmpty()){TreeNode node = stack.peek();//查找第一个结点if(node!=null){stack.pop();//弹出重复节点,按顺序放入右中左if(node.right!=null){stack.push(node.right);}stack.push(node);stack.push(null);if(node.left!=null){stack.push(node.left);}}else{stack.pop();node = stack.peek();stack.pop();res.add(node.val);}}return res;}
}

后序遍历-中右左

class Solution {public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Stack<TreeNode> stack = new Stack<>();if(root!=null){//先放入根节点stack.push(root);}while(!stack.isEmpty()){TreeNode node = stack.peek();//查找第一个结点if(node!=null){stack.pop();//弹出重复节点,按顺序放入中右左stack.push(node);stack.push(null);if(node.right!=null){stack.push(node.right);}if(node.left!=null){stack.push(node.left);}}else{stack.pop();node = stack.peek();stack.pop();res.add(node.val);}}return res;}
}

这篇关于代码随想录算法训练营第十四天|二叉树基础-二叉树迭代-二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642140

相关文章

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放